This paper studies the problem of robustly stochastic stability and stabilization for a class of uncertain Markov jump linear systems with time delay. A new stochastic Lyapunov–Krasovskii functional (LKF) is constructed for the stability analysis and stabilization, in which the delay is uniformly divided into multiple segments. Based on this LKF and using an improved Jensen's integral inequality, the improved delay-dependent stochastic stability criteria are first derived in terms of linear matrix inequalities (LMIs). Then, an LMI approach to the design of stabilizing controllers via delayed state feedback is developed. The previous stability criteria are extended to give the delay-dependent stabilization conditions in terms of LMIs. Furthermore, an LMI optimization algorithm is proposed to find the maximum allowable delay of the system. Finally, numerical examples show that the proposed results are effective and much less conservative than some existing results.

1.
Krasovskii
,
N. N.
, and
Lidskii
,
E. A.
, 1961, “
Analytical Design of Controllers in Systems With Random Attributes
,”
Autom. Remote Control (Engl. Transl.)
0005-1179,
22
, pp.
1021
1025
.
2.
Mariton
,
M.
, 1990,
Jump Linear Systems in Automatic Control
,
Marcel Dekker
,
New York
.
3.
Fang
,
Y.
, and
Loparo
,
K. A.
, 2002, “
Stabilization of Continuous-Time Jump Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
10
), pp.
1590
1603
.
4.
de Souza
,
C. E.
, 2006, “
Robust Stability and Stabilization of Uncertain Discrete-Time Markovian Jump Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
51
(
5
), pp.
836
841
.
5.
Shi
,
P.
,
Xia
,
Y.
,
Liu
,
G. P.
, and
Rees
,
D.
, 2006, “
On Designing of Slide-Mode Control for Stochastic Jump Systems
,”
IEEE Trans. Autom. Control
0018-9286,
51
(
1
), pp.
97
103
.
6.
Bolzern
,
P.
,
Colaneri
,
P.
, and
De Nicolao
,
G.
, 2006, “
On Almost Sure Stability of Continuous-Time Markov Jump Linear Systems
,”
Automatica
0005-1098,
42
(
6
), pp.
983
988
.
7.
Boukas
,
E. K.
,
Liu
,
Z. K.
, and
Shi
,
P.
, 2002, “
Delay-Dependent Stability and Output Feedback Stabilization of Markov Jump System With Time-Delay
,”
IEE Proc.: Control Theory Appl.
1350-2379,
149
(
5
), pp.
379
386
.
8.
Benjelloun
,
K.
, and
Boukas
,
E. K.
, 1998, “
Mean Square Stochastic Stability of Linear Time-Delay System With Markov Jumping Parameters
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
10
), pp.
1456
1460
.
9.
Cao
,
Y. -Y.
,
Lam
,
J.
, and
Hu
,
L. -S.
, 2003, “
Delay-Dependent Stochastic Stability and H∞ Analysis for Time-Delay Systems With Markovian Jumping Parameters
,”
J. Franklin Inst.
0016-0032,
340
(
6–7
), pp.
423
434
.
10.
Cao
,
Y. -Y.
,
Hu
,
L. -S.
, and
Xue
,
A. K.
, 2004, “
A New Delay-Dependent Stability Condition and H∞ Control for Jump Time-Delay System
,”
Proceedings of the 2004 American Control Conference
, Boston, MA, pp.
4183
4188
.
11.
Cao
,
Y. -Y.
,
Yan
,
W. J.
, and
Xue
,
A. K.
, 2004, “
Improve Delay-Dependent Stability Conditions and H∞ Control for Jump Time-Delay Systems
,”
Proceedings of the 43rd IEEE Conference on Decision and Control
, Atlantis, Paradise Island, Bahamas, pp.
4527
4532
.
12.
Wang
,
J. W.
, and
Luo
,
Y. S.
, 2008, “
Further Improvement of Delay-Dependent Stability for Markov Jump Systems With Time-Varying Delay
,”
Proceedings of the Seventh World Congress on Intelligent Control and Automation
, Chongqing, China, pp.
6319
6324
.
13.
Gao
,
J. P.
,
Huang
,
B.
, and
Wang
,
Z. D.
, 2001, “
LMI-Based Robust H∞ Control of Uncertain Linear Jump Systems With Time-Delays
,”
Automatica
0005-1098,
37
(
7
), pp.
1141
1146
.
14.
Boukas
,
E. K.
,
Liu
,
Z. K.
, and
Liu
,
G. X.
, 2001, “
Delay-Dependent Robust Stability and H∞ Control of Jump Linear Systems With Time-Delay
,”
Int. J. Control
0020-7179,
74
(
4
), pp.
329
340
.
15.
Cao
,
Y. -Y.
, and
Lam
,
J.
, 2000, “
Robust H∞ Control for Uncertain Markovian Jump Systems With Time-Delay
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
1
), pp.
77
83
.
16.
Wu
,
J.
,
Chen
,
T. W.
, and
Wang
,
L.
, 2006, “
Delay-Dependent Robust Stability and H∞ Control for Jump Linear Systems With Delays
,”
Syst. Control Lett.
0167-6911,
55
(
11
), pp.
939
948
.
17.
Gu
,
K.
, and
Niculescu
,
S. -I.
, 2001, “
Further Remarks on Additional Dynamics in Various Model Transformations of Linear Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
46
(
3
), pp.
497
500
.
18.
Park
,
P.
, 1999, “
A Delay-Dependent Stability Criterion for Systems With Uncertain Time-Invariant Delays
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
4
), pp.
876
877
.
19.
Fridman
,
E.
, 2001, “
New Lyapunov-Krasovskii Functionals for Stability of Linear Retarded and Neutral Type Systems
,”
Syst. Control Lett.
0167-6911,
43
(
4
), pp.
309
319
.
20.
Wu
,
M.
,
He
,
Y.
,
She
,
J. -H.
, and
Liu
,
G. -P.
, 2004, “
Delay-Dependent Criteria for Robust Stability of Time-Varying Delay Systems
,”
Automatica
0005-1098,
40
(
8
), pp.
1435
1439
.
21.
He
,
Y.
,
Wang
,
Q. -G.
,
Xie
,
L. H.
, and
Lin
,
C.
, 2007, “
Further Improvement of Free-Weighting Matrices Technique for Systems With Time-Varying Delay
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
2
), pp.
293
299
.
22.
Han
,
Q. -L.
, 2005, “
Absolute Stability of Time-Delay Systems With Sector Bounded Nonlinearity
,”
Automatica
0005-1098,
41
(
12
), pp.
2171
2176
.
23.
Gouaisbaut
,
F.
, and
Peaucelle
,
D.
, 2006, “
Delay-Dependent Robust Stability of Time Delay Systems
,”
The Fifth IFAC Symposium on Robust Control Design
, Toulouse, France.
24.
Gouaisbaut
,
F.
, and
Peaucelle
,
D.
, 2006, “
Delay-Dependent Stability Analysis of Linear Time Delay Systems
,”
Proceedings of the Sixth IFAC Workshop on Time-Delay Systems
, L’Aquila, Italy.
25.
Han
,
Q. -L.
, 2009, “
A Discrete Delay Decomposition Approach to Stability of Linear Retarded and Neutral Systems
,”
Automatica
0005-1098,
45
(
2
), pp.
517
524
.
26.
Zhao
,
Y.
,
Gao
,
H.
,
Lam
,
J.
, and
Du
,
B.
, 2009, “
Stability and Stabilization of Delayed T-S Fuzzy Systems: A Delay Partitioning Approach
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
17
(
4
), pp.
750
762
.
27.
Fei
,
Z.
,
Gao
,
H.
, and
Shi
,
P.
, 2009, “
New Results on Stabilization of Markovian Jump Systems With Time Delay
,”
Automatica
0005-1098,
45
(
10
), pp.
2300
2306
.
28.
Petersen
,
I. R.
, 1987, “
A Stabilization Algorithm for a Class of Uncertain Linear Systems
,”
Syst. Control Lett.
0167-6911,
8
(
4
), pp.
351
357
.
29.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
30.
Gahinet
,
P.
,
Nemirovski
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M.
, 1995,
LMI Control Toolbox
,
Math Works
,
Natick, MA
.
31.
Shu
,
Z.
,
Lam
,
J.
, and
Xu
,
S.
, 2006, “
Robust Stabilization of Markovian Delay Systems With Delay-Dependent Exponential Estimates
,”
Automatica
0005-1098,
42
(
11
), pp.
2001
2008
.
You do not currently have access to this content.