This paper describes the design and control of a new chemomuscle actuation system for robotic systems, especially the mobile systems inspired by biological principles. Developed based on the pneumatic artificial muscle, a chemomuscle actuation system features a high power density, as well as similar characteristics to the biological muscles. Furthermore, by introducing monopropellant (a special type of liquid fuel) as the energy storage media, the chemomuscle system leverages the high energy density of liquid fuel and provides a compact form of high-pressure gas supply with a simple structure. The introduction of monopropellant addresses the limitation of pneumatic supply on mobile devices and thus is expected to facilitate the future application of artificial muscle on biorobotic systems. In this paper, the design of a chemomuscle actuation system is presented, as well as a robust controller design that provides effective control for this highly nonlinear system. To demonstrate the proposed chemomuscle actuation system, an experimental prototype is constructed, on which the proposed control algorithm provides good tracking performance.

1.
Schulte
,
H. F.
, 1961, “
The Characteristics of the McKibben Artificial Muscle
,”
The Application of External Power in Prosthetics and Orthotics
,
National Academy of Sciences-National Research Council
,
Washington, DC
.
2.
Gavrilović
,
M. M.
, and
Maric
,
M. R.
, 1969, “
Positional Servo-Mechanism Activated by Artificial Muscles
,”
Med. Biol. Eng.
0025-696X,
7
, pp.
77
82
.
3.
Hannaford
,
B.
,
Winters
,
J. M.
,
Chou
,
C. -P.
, and
Marbot
,
P. -H.
, 1995, “
The Anthroform Biorobotic Arm: A System for the Study of Spinal Circuits
,”
Ann. Biomed. Eng.
0090-6964,
23
, pp.
399
408
.
4.
Bowler
,
C. J.
,
Caldwell
,
D. G.
, and
Medrano-Cerda
,
G. A.
, 1996, “
Pneumatic Muscle Actuators: Musculature for an Anthropomorphicrobot Arm
,”
IEE Colloquium on Actuator Technology: Current Practice and New Developments
,
IEE
,
Savoy Place, London
, pp.
8/1
8/6
.
5.
Tondu
,
B.
, and
Lopez
,
P.
, 2000, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
0272-1708,
20
(
2
), pp.
15
38
.
6.
Hosoda
,
K.
,
Takuma
,
T.
, and
Nakamoto
,
A.
, 2006, “
Design and Control of 2D Biped That Can Walk and Run With Pneumatic Artificial Muscles
,”
IEEE-RAS International Conference on Humanoid Robots
, pp.
284
289
.
7.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
, and
Lefeber
,
D.
, 2006, “
Controlling a Bipedal Walking Robot Actuated by Pleated Pneumatic Artificial Muscles
,”
Robotica
0263-5747,
24
(
04
), pp.
401
410
.
8.
Aschemann
,
H.
, and
Schindele
,
D.
, 2008, “
Sliding-Mode Control of a High-Speed Linear Axis Driven by Pneumatic Muscle Actuators
,”
IEEE Trans. Ind. Electron.
0278-0046,
55
(
11
), pp.
3855
3864
.
9.
Zhu
,
X.
,
Tao
,
G.
,
Yao
,
B.
, and
Cao
,
J.
, 2008, “
Adaptive Robust Posture Control of a Parallel Manipulator Driven by Pneumatic Muscles
,”
Automatica
0005-1098,
44
(
9
), pp.
2248
2257
.
10.
Caldwell
,
D. G.
,
Razak
,
A.
, and
Goodwin
,
M. J.
, 1993, “
Braided Pneumatic Muscle Actuators
,”
IFAC Conference on Intelligent Autonomous Vehicles
, pp.
507
512
.
11.
Hannaford
,
B.
, and
Winters
,
J. M.
, 1990, “
Actuator Properties and Movement Control: Biological and Technological Models
,”
Multiple Muscle Systems: Biomechanics and Movement Organization
,
Springer-Verlag
,
New York
, Chap. 7, pp.
101
120
.
12.
Isermann
,
R.
, and
Raab
,
U.
, 1993, “
Intelligent Actuators—Ways to Autonomous Systems
,”
Automatica
0005-1098,
29
(
5
), pp.
1315
1331
.
13.
Klute
,
G. K.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
, 2002, “
Artificial Muscles: Actuators for Biorobotic Systems
,”
Int. J. Robot. Res.
0278-3649,
21
(
4
), pp.
295
309
.
14.
Gogola
,
M. A.
,
Barth
,
E. J.
, and
Goldfarb
,
M.
, 2002, “
Monopropellant Powered Actuators for Use in Autonomous Human-Scaled Robotics
,”
Proceedings of the 2002 IEEE International Conference on Robotics & Automation
, pp.
2357
2362
.
15.
Goldfarb
,
M.
,
Barth
,
E. J.
,
Gogola
,
M. A.
, and
Wehrmeyer
,
J. A.
, 2003, “
Design and Energetic Characterization of a Liquid-Propellant-Powered Actuator for Self-Powered Robots
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
8
(
2
), pp.
254
262
.
16.
Fite
,
K. B.
, and
Goldfarb
,
M.
, 2006, “
Design and Energetic Characterization of a Proportional-Injector Monopropellant-Powered Actuator
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
11
(
2
), pp.
196
204
.
17.
Shields
,
B. L.
,
Fite
,
K. B.
, and
Goldfarb
,
M.
, 2006, “
Design, Control, and Energetic Characterization of a Solenoid-Injected Monopropellant-Powered Actuator
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
11
(
4
), pp.
477
487
.
18.
Fite
,
K. B.
,
Withrow
,
T. J.
,
Shen
,
X.
,
Wait
,
K. W.
,
Mitchell
,
J. E.
, and
Goldfarb
,
M.
, 2008, “
A Gas-Actuated Anthropomorphic Prosthesis for Transhumeral Amputees
,”
IEEE Trans. Rob. Autom.
1042-296X,
24
(
1
), pp.
159
169
.
19.
Withrow
,
T. J.
,
Shen
,
X.
,
Mitchell
,
J. E.
, and
Goldfarb
,
M.
, 2008, “
A Forearm Actuation Unit for an Upper Extremity Prosthesis
,”
IEEE International Conference on Robotics and Automation
, pp.
2459
2464
.
20.
Raab
,
U.
, and
Isermann
,
R.
, 1990, “
Actuator Principles With Low Power
,” In vdi/vde Tagung Actuator 90, Bremen.
21.
Chou
,
C. -P.
, and
Hannaford
,
B.
, 1996, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
1
), pp.
90
102
.
22.
Al-Ibrahim
,
A. M.
, and
Otis
,
D. R.
, 1992, “
Transient Air Temperature and Pressure Measurements During the Charging and Discharging Processes of an Actuating Pneumatic Cylinder
,”
Proceedings of the 45th National Conference on Fluid Power
.
23.
Blackburn
,
J. F.
,
Reethof
,
G.
, and
Shearer
,
J. L.
, 1960,
Fluid Power Control
,
Technology Press of MIT and Wiley
,
New York
.
24.
Slotine
,
J. J. E.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.