This paper proposes to use optimal dynamic quantizers for feedback control in mechatronics systems when the actuator signals are constrained to discrete-valued signals. Here, the dynamic quantizer is a device that transforms the continuous-valued signals into the discrete-valued ones depending on the past signal data, as well as the current data. First, a closed form optimal quantizer is presented in a general linear fraction transformation representation setting. The optimal quantizer minimizes the deviation of the output produced by the quantized signals from the corresponding output yielded by the continuous-valued signals before quantization. Then, its experimental evaluation is performed by using a crane positioning system with a discrete-valued input to demonstrate the effectiveness of the proposed quantizers.

1.
Sznaier
,
M.
, and
Damborg
,
M. J.
, 1989, “
Control of Constrained Discrete Time Linear Systems Using Quantized Controls
,”
Automatica
0005-1098,
25
(
4
), pp.
623
628
.
2.
Raisch
,
J.
, 1995, “
Control of Continuous Plants by Symbolic Output Feedback
,”
Hybrid Systems II
(
Lecture Notes in Computer Science Series
No. 999),
Springer-Verlag
,
Berlin
, pp.
370
390
.
3.
Bicchi
,
A.
,
Marigo
,
A.
, and
Piccoli
,
B.
, 2002, “
On the Reachability of Quantized Control Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
4
), pp.
546
563
.
4.
Picasso
,
B.
,
Gouaisbaut
,
F.
, and
Bicchi
,
A.
, 2002, “
Construction of Invariant and Attractive Sets for Quantized-Input Linear Systems
,”
Proceedings of the 41st IEEE Conference on Decision and Control
, pp.
824
829
.
5.
Picasso
,
B.
, and
Bicchi
,
A.
, 2003, “
Stabilization of LTI Systems With Quantized State—Quantized Input Static Feedback
,”
Hybrid Systems: Computation and Control
(
Lecture Notes in Computer Science Series
No. 2623),
Springer-Verlag
,
Berlin
, pp.
20
35
.
6.
Quevedo
,
D. E.
, and
Goodwin
,
G. C.
, 2003, “
Audio Quantization From a Receding Horizon Control Perspective
,”
Proceedings of the 2003 American Control Conference
, pp.
4131
4136
.
7.
Quevedo
,
D. E.
,
Goodwin
,
G. C.
, and
De Dona
,
J. A.
, 2004, “
Finite Constraint Set Receding Horizon Quadratic Control
,”
Int. J. Robust Nonlinear Control
1049-8923,
14
(
4
), pp.
355
377
.
8.
Schreirer
,
R.
, and
Temes
,
G. C.
, 2004,
Understanding Delta-Sigma Data Converters
,
Wiley
,
New York
/
IEEE
,
New York
.
9.
Ishikawa
,
M.
,
Maruta
,
I.
, and
Sugie
,
T.
, 2007, “
Quantized Controller Design Using Feedback Modulators
,”
Proceedings of the European Control Conference
, pp.
3269
3274
.
10.
Canudas-de-Wit
,
C.
,
Rubio
,
F. R.
,
Fornes
,
J.
, and
Gomez-Estern
,
F.
, 2006, “
Differential Coding in Networked Controlled Linear Systems
,”
Proceedings of the 2006 American Control Conference
, pp.
4177
4182
.
11.
Azuma
,
S.
, and
Sugie
,
T.
, 2008, “
Optimal Dynamic Quantizers for Discrete-Valued Input Control
,”
Automatica
0005-1098,
44
(
2
), pp.
396
406
.
12.
Azuma
,
S.
, and
Sugie
,
T.
, 2008, “
Synthesis of Optimal Dynamic Quantizers for Discrete-Valued Input Control
,”
IEEE Trans. Autom. Control
0018-9286,
53
(
9
), pp.
2064
2075
.
13.
Brockett
,
R. W.
, and
Liberzon
,
D.
, 2000, “
Quantized Feedback Stabilization of Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
7
), pp.
1279
1289
.
14.
Elia
,
N.
, and
Mitter
,
S. K.
, 2001, “
Stabilization of Linear Systems With Limited Information
,”
IEEE Trans. Autom. Control
0018-9286,
46
(
9
), pp.
1384
1400
.
15.
Ishii
,
H.
, and
Francis
,
B. A.
, 2002, “
Stabilizing a Linear System by Switching Control With Dwell Time
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
12
), pp.
1962
1973
.
16.
Tsumura
,
K.
, and
Maciejowski
,
J.
, 2003, “
Optimal Quantization of Signals for System Identification
,”
Proceedings of the European Control Conference
.
17.
Nair
,
G. N.
, and
Evans
,
R. J.
, 2004, “
Stabilizability of Stochastic Linear Systems With Finite Feedback Data Rates
,”
SIAM J. Control Optim.
0363-0129,
43
(
2
), pp.
413
436
.
18.
Tatikonda
,
S.
, and
Mitter
,
S.
, 2004, “
Control Under Communication Constraints
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
7
), pp.
1056
1068
.
19.
Fu
,
M.
, and
Xie
,
L.
, 2005, “
The Sector Bound Approach to Quantized Feedback Control
,”
IEEE Trans. Autom. Control
0018-9286,
50
(
11
), pp.
1698
1711
.
20.
Bullo
,
F.
, and
Liberzon
,
D.
, 2006, “
Quantized Control via Locational Optimization
,”
IEEE Trans. Autom. Control
0018-9286,
51
(
1
), pp.
2
13
.
21.
Liberzon
,
D.
, and
Nesic
,
D.
, 2007, “
Input-to-State Stabilization of Linear Systems With Quantized State Measurements
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
5
), pp.
767
781
.
22.
Azuma
,
S.
, and
Sugie
,
T.
, 2008, “
Stability Analysis of Quantized Feedback Systems Including Optimal Dynamic Quantizers
,”
Proceedings of the 47th IEEE Conference on Decision and Control
, pp.
3392
3397
.
You do not currently have access to this content.