Abstract

This paper applies the H2 norm along time and parameter domains. The norm is related to the probabilistic H2 problem. It is calculated using polynomial chaos to handle uncertainty in the plant model. The structure of expanded states resulting from Galerkin projections of a state space model with uncertain parameters is used to formulate cost functions in terms of mean performances of the states, as well as covariances. Also, bounds on the norm are described in terms of linear matrix inequalitys. The form of the gradient of the norm, which can be used in optimization, is given as a Lyapunov equation. Additionally, this approach can be used to solve the related probabilistic LQR problem. The legitimacy of the concept is demonstrated through two mechanical oscillator examples. These controllers could be easily implemented on physical systems without observing uncertain parameters.

1.
Wiener
,
N.
, 1938, “
The Homogeneous Chaos
,”
Am. J. Math.
0002-9327,
60
(
4
), pp.
897
936
.
2.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
3.
Xu
,
L.
,
Li
,
G.
,
Mays
,
L. W.
, and
Asce
,
M.
, 2001, “
Optimal Operation of Soil Aquifer Treatment Systems Considering Parameter Uncertainty
,”
Water Resour. Manage.
0920-4741,
15
(
2
), pp.
123
147
.
4.
Cameron
,
R. H.
, and
Martin
,
W. T.
, 1947, “
The Orthogonal Development of Nonlinear Functionals in Series of Fourier–Hermite Functionals
,”
Ann. Math.
0003-486X,
48
(
2
), pp.
385
392
.
5.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
24
(
2
), pp.
619
644
.
6.
Templeton
,
B. A.
, 2009, “
A Polynomial Chaos Approach to Control Design
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
7.
Monti
,
A.
,
Ponci
,
F.
, and
Lovett
,
T.
, 2004, “
A Polynomial Chaos Theory Approach to the Control Design of a Power Converter
,”
Power Electronics Specialists Conference, PESC 04, IEEE 35th Annual
, Vol.
6
, pp.
4809
4813
.
8.
Sandu
,
C.
,
Sandu
,
A.
,
Chan
,
B. J.
, and
Ahmadian
,
M.
, 2004, “
Treating Uncertainties in Multibody Dynamic Systems Using a Polynomial Chaos Spectral Decomposition
,”
Proceedings of the IMECE ‘04: ASME International Sixth Annual Symposium on Advanced Vehicle Technologies
.
9.
Sarma
,
P.
,
Durlofsky
,
L. J.
, and
Aziz
,
K.
, 2005, “
Efficient Closed-Loop Production Optimization Under Uncertainty
,”
SPE Europec/EAGE Annual Conference
.
10.
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
, 2006, “
Application of Polynomial Chaos in Stability and Control
,”
Automatica
0005-1098,
42
(
5
), pp.
789
795
.
11.
Smith
,
A.
,
Monti
,
A.
, and
Ponci
,
F.
, 2006, “
Robust Controller Using Polynomial Chaos Theory
,”
Industry Applications Conference, 41st IAS Annual Meeting, Conference Record of the 2006 IEEE
, Vol.
5
, pp.
2511
2517
.
12.
Smith
,
A.
,
Monti
,
A.
, and
Ponci
,
F.
, 2006, “
Indirect Measurements via Polynomial Chaos Observer
,”
Advanced Methods for Uncertainty Estimation in Measurement. AMUEM 2006. Proceedings of the 2006 IEEE International Workshop
, pp.
27
32
.
13.
Nagy
,
Z. K.
, and
Braatz
,
R. D.
, 2007, “
Distributional Uncertainty Analysis Using Power Series and Polynomial Chaos Expansions
,”
J. Process Control
0959-1524,
17
(
3
), pp.
229
240
.
14.
Fisher
,
J.
, and
Bhattacharya
,
R.
, 2008, “
On Stochastic LQR Design and Polynomial Chaos
,”
American Control Conference
, pp.
95
100
.
15.
Fisher
,
J.
, and
Bhattacharya
,
R.
, 2008, “
Stability Analysis of Stochastic Systems Using Polynomial Chaos
,”
American Control Conference
, pp.
4250
4255
.
16.
Gautschi
,
W.
, 2004,
Orthogonal Polynomials: Computation and Approximation
,
Oxford University
,
New York
.
17.
Soize
,
C.
, and
Ghanem
,
R.
, 2004, “
Physical Systems With Random Uncertainties: Chaos Representations With Arbitrary Probability Measure
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
26
(
2
), pp.
395
410
.
18.
Boyd
,
J. P.
, 2000,
Chebyshev and Fourier Spectral Methods
, 2nd ed.,
Dover
,
New York
.
19.
Ghosh
,
D.
, and
Ghanem
,
R.
, 2005, “
A New Algorithm for Solving the Random Eigenvalue Problem Using Polynomial Chaos Expansion
,”
46th AIAA/ASME/AHS/ASC Structure, Structural Dynamics, and Materials Conference
.
20.
Shimp
,
S.
, 2008, “
Vehicle Sprung Mass Parameter Estimation Using an Adaptive Polynomial-Chaos Method
,” MS thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
21.
Lucor
,
D.
, and
Karniadakis
,
G. E.
, 2004, “
Adaptive Generalized Chaos for Nonlinear Random Oscillators
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
26
, pp.
720
735
.
22.
Ackermann
,
J.
, 2002,
Robust Control: The Parameter Space Approach
,
Springer-Verlag
,
London
.
23.
Cox
,
D.
, 2003, “
Control Design for Parameter Dependent Aeroelastic Systems
,” Ph.D. thesis, Duke University, Durham, NC.
24.
Loparo
,
K. A.
, and
Feng
,
X.
, 1996, “
Stability of Stochastic Systems
,”
The Control Handbook
,
W. W.
Levine
, ed.,
CRC
,
Boca Raton, FL
, pp.
1105
1126
.
25.
Boyd
,
S. P.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
26.
Lofberg
,
J.
, 2004, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
Proceedings of the CACSD Conference
.
27.
Sturm
,
J. F.
, 1999, “
Using SeDuMi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
1055-6788,
11
, pp.
625
653
.
You do not currently have access to this content.