This paper presents a numerical calculation of the evolution of the spatially resolved solid concentration in the two electrodes of a lithium-ion cell. The microscopic solid concentration is driven by the macroscopic Butler–Volmer current density distribution, which is consequently driven by the applied current through the boundary conditions. The resulting, mostly causal, implementation of the algebraic differential equations that describe the battery electrochemical principles, even after assuming fixed electrolyte concentration, is of high order and complexity and is denoted as the full order model. The full order model is compared with the results in the works of Smith and Wang (2006, “Solid-State Diffusion Limitations on Pulse Operation of a Lithium-Ion Cell for Hybrid Electric Vehicles,” J. Power Sources, 161, pp. 628–639) and Wang et al. (2007 “Control oriented 1D Electrochemical Model of Lithium Ion Battery,” Energy Convers. Manage., 48, pp. 2565–2578) and creates our baseline model, which will be further simplified for charge estimation. We then propose a low order extended Kalman filter for the estimation of the average-electrode charge similarly to the single-particle charge estimation in the work of White and Santhanagopalan (2006, “Online Estimation of the State of Charge of a Lithium Ion Cell,” J. Power Sources, 161, pp. 1346–1355) with the following two substantial enhancements. First, we estimate the average-electrode, or single-particle, solid-electrolyte surface concentration, called critical surface charge in addition to the more traditional bulk concentration called state of charge. Moreover, we avoid the weakly observable conditions associated with estimating both electrode concentrations by recognizing that the measured cell voltage depends on the difference, and not the absolute value, of the two electrode open circuit voltages. The estimation results of the reduced, single, averaged electrode model are compared with the full order model simulation.

1.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
0013-4651,
140
, pp.
1526
1533
.
2.
de Vidts
,
P.
,
Delgado
,
J.
, and
White
,
R. E.
, 1995, “
Mathematical Modeling for the Discharge of a Metal Hydride Electrode
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
4006
4013
.
3.
Smith
,
K.
, and
Wang
,
C. Y.
, 2006, “
Solid-State Diffusion Limitations on Pulse Operation of a Lithium-Ion Cell for Hybrid Electric Vehicles
,”
J. Power Sources
0378-7753,
161
, pp.
628
639
.
4.
Barbarisi
,
O.
,
Vasca
,
F.
, and
Glielmo
,
L.
, 2006 “
State of Charge Kalman Filter Estimator for Automotive Batteries
,”
Control Eng. Pract.
0967-0661,
14
, pp.
267
275
.
5.
Prins-Jansen
,
J. A.
,
Fehribach
,
J. D.
,
Hemmes
,
K.
, and
de Wita
,
J. H. W.
, 1996, “
A Three-Phase Homogeneous Model for Porous Electrodes in Molten-Carbonate Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
1617
1628
.
6.
Verbrugge
,
M. W.
, and
Koch
,
B. J.
, 2003, “
Electrochemical Analysis of Lithiated Graphite Anodes
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A374
A384
.
7.
Newman
,
J.
, and
Tiedemann
,
W.
, 1975, “
Porous-Electrode Theory With Battery Applications
,”
AIChE J.
0001-1541,
21
, pp.
25
41
.
8.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
, 1994, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
0013-4651,
141
, pp.
1
10
.
9.
Ramadass
,
P.
,
Haran
,
B.
,
Gomadam
,
P. M.
,
White
,
R.
, and
Popov
,
B. N.
, 2004, “
Development of First Principles Capacity Fade Model for Li-Ion Cells
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A196
A203
.
10.
Sikha
,
G.
,
Popov
,
B. N.
, and
White
,
R. E.
, 2004, “
Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A1104
A1114
.
11.
Wang
,
C. Y.
,
Gu
,
W. B.
, and
Liaw
,
B. Y.
, 1998, “
Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells. Part I: Model Development
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
3407
3417
.
12.
Wang
,
C. Y.
,
Gu
,
W. B.
, and
Liaw
,
B. Y.
, 1998, “
Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells. Part II: Application to Ni-Cd and Ni-MH Cells
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
3418
3427
.
13.
Gu
,
W. B.
, and
Wang
,
C. Y.
, 2000, “
Thermal and Electrochemical Coupled Modeling of a Lithium-Ion Cell
,”
Proc.-Electrochem. Soc.
0161-6374,
99
, pp.
748
762
.
14.
Paxton
,
B.
, and
Newmann
,
J.
, 1997, “
Modeling of Nickel Metal Hydride
,”
J. Electrochem. Soc.
0013-4651,
144
, pp.
3818
3831
.
15.
Verbrugge
,
M.
, and
Tate
,
E.
, 2004, “
Adaptive State of Charge Algorithm for Nickel Metal Hydride Batteries Including Hysteresis Phenomena
,”
J. Power Sources
0378-7753,
126
, pp.
236
249
.
16.
Hariprakasha
,
B.
,
Marthaa
,
S. K.
,
Jaikumara
,
A.
, and
Shukla
,
A. K.
, 2004, “
On-Line Monitoring of Leadacid Batteries by Galvanostatic Nondestructive Technique
,”
J. Power Sources
0378-7753,
137
, pp.
128
133
.
17.
Salkind
,
A. J.
,
Fennie
,
C.
,
Singh
,
P.
,
Atwater
,
T.
, and
Reisner
,
D. E.
, 1999, “
Determination of State-of-Charge and State-of-Health of Batteries by Fuzzy Logic Methodology
,”
J. Power Sources
0378-7753,
80
, pp.
293
300
.
18.
Pop
,
V.
,
Bergveld
,
H. J.
,
Op het Veld
,
J. H. G.
,
Regtien
,
P. P. L.
,
Danilov
,
D.
, and
Notten
,
P. H. L.
, 2006, “
Modeling Battery Behavior for Accurate State-of-Charge Indication
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A2013
A2022
.
19.
Smith
,
K.
,
Rahn
,
C. D.
, and
Wang
,
C. Y.
, 2007, “
Control oriented 1D Electrochemical Model of Lithium Ion Battery
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
2565
2578
.
20.
Santhanagopalan
,
S.
, and
White
,
R. E.
, 2006, “
Online Estimation of the State of Charge of a Lithium Ion Cell
,”
J. Power Sources
0378-7753,
161
, pp.
1346
1355
.
21.
Haran
,
B. S.
,
Popov
,
B. N.
, and
White
,
R. E.
, 1998, “
Determination of the Hydrogen Diffusion Coefficient in Metal Hydrides by Impedance Spectroscopy
,”
J. Power Sources
0378-7753,
75
, pp.
56
63
.
22.
Doyle
,
M.
, and
Fuentes
,
Y.
, 2003, “
Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A706
A713
.
23.
Schiesser
,
W. E.
, 1991,
The Numerical Method of Lines: Integration of Partial Differential Equations
,
Elsevier Science & Technology
,
Amsterdam, The Netherlands
.
24.
2003, FreedomCar Battery Test Manual for Power-Assist Hybrid Elecric Vehicles, DOE/ID-11069.
25.
Di Domenico
,
D.
,
Fiengo
,
G.
, and
Stefanopoulou
,
A.
, 2008, “
Lithium-Ion Battery State of Charge Estimation With a Kalman Filter Based on a Electrochemical Model
,”
Proceedings of the 2008 IEEE Conference on Control Applications
, Vol.
1
, pp.
702
707
.
26.
Hermann
,
R.
, and
Krener
,
A. J.
, 1977, “
Nonlinear Controllability and Observability
,”
IEEE Trans. Autom. Control
0018-9286,
22
, pp.
728
740
.
You do not currently have access to this content.