This paper documents the design of a low-order, fixed-gain, controller that can maintain the positioning performance of an electrohydraulic actuator operating under variable load with a leaking piston seal. A set of linear time-invariant equivalent models of the faulty hydraulic actuator is first established, in the frequency domain, by Fourier transformation of acceptable actuator input-output responses. Then, a robust position control law is synthesized by quantitative feedback theory to meet the prescribed design tolerances on closed-loop stability and reference tracking. The designed fault tolerant controller uses only actuator position as feedback, yet it can accommodate nonlinearities in the hydraulic functions, maintain robustness against typical parametric uncertainties, and maintain the closed-loop performance despite a leakage fault that can bypass up to 40% of the rated servovalve flow across the actuator piston. To demonstrate the utility of the fault tolerant control approach in a realistic application, the experimental fault tolerant hydraulic system is operated as a flight surface actuator in the hardware-in-the-loop simulation of a high-performance jet aircraft.

1.
Tzafestas
,
C. G.
,
Rigatos
,
G. G.
, and
Tzafestas
,
S. G.
, 1998, “
Design of Fault-Tolerant Control Systems: Passive and Active Approaches
,”
Science
0036-8075,
24
(
4
), pp.
5
28
.
2.
An
,
L.
, and
Sepehri
,
N.
, 2005, “
Hydraulic Actuator Circuit Fault Detection Using Extended Kalman Filter
,”
Int. J. Fluid Power
1439-9776,
6
(
1
), pp.
41
51
.
3.
Niksefat
,
N.
, and
Sepehri
,
N.
, 2002, “
A QFT Fault-Tolerant Control for Electrohydraulic Positioning Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
4
), pp.
626
632
.
4.
Houpis
,
C. H.
,
Rasmussen
,
S. J.
, and
Garcia-Sanz
,
M.
, 2006,
Quantitative Feedback Theory: Fundamentals and Applications
,
2nd ed.
,
CRC
,
Boca Raton, FL
.
5.
Horowitz
,
I. M.
, 1993,
Quantitative Feedback Design Theory—QFT
,
QFT Publications
,
Boulder, CO
, Vol.
1
.
6.
Karpenko
,
M.
, and
Sepehri
,
N.
, 2005, “
Fault-Tolerant Control of a Servohydraulic Positioning System With Crossport Leakage
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
1
), pp.
155
161
.
7.
Karpenko
,
M.
, and
Sepehri
,
N.
, 2008, “
Equivalent Time-Invariant Modeling of Electrohydraulic Actuators With Application to Robust Control Synthesis
,”
Int. J. Fluid Power
1439-9776,
9
(
3
), pp.
8
18
.
8.
Thompson
,
D. F.
,
Pruyn
,
J. S.
, and
Shukla
,
A.
, 1999, “
Feedback Design for Robust Tracking and Robust Stiffness in Flight Control Actuators Using a Modified QFT Technique
,”
Int. J. Control
0020-7179,
72
(
16
), pp.
1480
1497
.
9.
Thayer
,
W. J.
, 1965,
Transfer Functions for Moog Servovalves
,
Moog Inc.
,
East Aurora, NY
.
10.
Merritt
,
H. E.
, 1967,
Hydraulic Control Systems
,
Wiley
,
New York
.
11.
Niksefat
,
N.
,
Sepehri
,
N.
, and
Wu
,
Q.
, 2007, “
Design and Experimental Evaluation of a QFT Contact Task Controller for Electro-Hydraulic Actuators
,”
Int. J. Robust Nonlinear Control
1049-8923,
17
(
2–3
), pp.
225
250
.
12.
Sepehri
,
N.
,
Karpenko
,
M.
,
An
,
L.
, and
Karam
,
S.
, 2005, “
A Test Bed for Experimental Validation of Fault Tolerant Control and Condition Monitoring Algorithms in Fluid Power Systems: From Design Through Implementation
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
29
(
3
), pp.
441
458
.
13.
Karpenko
,
M.
, and
Sepehri
,
N.
, 2009, “
Hardware-in-the-loop Simulator for Research on Fault Tolerant Control of Electrohydraulic Actuators in a Flight Control Application
,”
Mechatronics
0957-4158,
19
(
7
), pp.
1067
1077
.
14.
Nguyen
,
L. T.
,
Ogburn
,
M. E.
,
Gilbert
,
W. P.
,
Kibler
,
K. S.
,
Brown
,
P. W.
, and
Deal
,
P. L.
, 1979, “
Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane With Relaxed Static Stability
,” Technical Report No. NASA-TP-1538,
NASA
Langley Research Center, Hampton, VA.
You do not currently have access to this content.