Sufficient and improved stability robustness conditions that depend both on the size and time derivative of time varying delays are presented. The approach is applied to investigate the problem of finding memoryless state feedback control that simultaneously stabilizes the uncertain system and guarantees an upper bound for some performance index. The perturbations are unknown but norm bounded. The results are derived via Lyapunov– Krasovskii functional and are expressed in terms of linear matrix inequalities. Numerical computations are performed to illustrate the feasibility and the improvements of the results with respect to previous works.

1.
Su
,
J. -H.
,
Fong
,
I. -K.
, and
Tsen
,
C. -L.
, 1994, “
Stability Analysis of Linear Systems With Time Delay
,”
IEEE Trans. Autom. Control
0018-9286,
39
, pp.
1341
1344
.
2.
Xie
,
W.
, 2008, “
Improved Delay Independent H2 Performance Analysis and Memoryless State Feedback for Linear Delay Systems With Polytopic Uncertainties
,”
Int. J. Control Automation and Systems
,
6
, pp.
263
268
.
3.
Cao
,
Y. -Y.
,
Sun
,
Y. -X.
, and
Cheng
,
C.
, 1998, “
Delay Dependent Robust Stabilization of Uncertain Systems With Multiple State Delays
,”
IEEE Trans. Autom. Control
0018-9286,
43
, pp.
1608
1612
.
4.
Li
,
X.
, and
de Souza
,
C. E.
, 1997, “
Delay-Dependent Robust Stability and Stabilization of Uncertain Linear Time Delay Systems: A Linear Matrix Inequality Approach
,”
IEEE Trans. Autom. Control
0018-9286,
42
, pp.
1144
1148
.
5.
Park
,
P.
, 1999, “
A Delay Dependent Stability Criterion for Systems With Uncertain Time Invariant Delay
,”
IEEE Trans. Autom. Control
0018-9286,
44
, pp.
876
877
.
6.
Kim
,
J. -H.
, 1996, “
Robust Stability of Linear Systems With Delayed Perturbations
,”
IEEE Trans. Autom. Control
0018-9286,
41
, pp.
1820
1822
.
7.
Fridman
,
E.
, and
Shaded
,
U.
, 2002, “
An Improved Stabilization Method for Linear Time Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
1931
1937
.
8.
Kim
,
J. -H.
, 2001, “
Delay and Its Time Derivative Dependent Robust Stability of Time Delayed Linear Systems With Uncertainty
,”
IEEE Trans. Autom. Control
0018-9286,
46
, pp.
789
792
.
9.
Moon
,
Y. S.
,
Park
,
P.
,
Kwon
,
W. H.
, and
Lee
,
Y. S.
, 2001, “
Delay Dependent Robust Stabilization of Uncertain State Delayed Systems
,”
Int. J. Control
0020-7179,
74
, pp.
1447
1455
.
10.
He
,
Y.
,
Wu
,
M.
,
Shi
,
J. -H.
, and
Liu
,
G. -P.
, 2004, “
Parameter Dependent Lyapunov Functional for Stability of Time Delay Systems With Polytopic Type Uncertainties
,”
IEEE Trans. Autom. Control
0018-9286,
49
, pp.
828
832
.
11.
Xu
,
S.
, and
Lam
,
J.
, 2005, “
Improved Delay Dependent Stability Criteria for Time Varying Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
50
, pp.
384
387
.
12.
Zhang
,
X. -M.
,
Wu
,
M.
,
She
,
J. -H.
, and
He
,
Y.
, 2005, “
Delay Dependent Stabilization of Linear Systems With Time Varying State and Input Delay
,”
Automatica
0005-1098,
41
, pp.
1405
1412
.
13.
He
,
Y.
,
Wang
,
Q. -G.
,
Xie
,
L.
, and
Lin
,
C.
, 2007, “
Further Improvements of Free-Weighting Matrices Technique for Systems With Time Varying Delay
,”
IEEE Trans. Autom. Control
0018-9286,
52
, pp.
293
299
.
14.
Tissir
,
E. H.
, 2007, “
Delay Dependent Robust Stability of Linear Systems With Non Commensurate Time Varying Delays
,”
Int. J. Syst. Sci.
0020-7721,
38
, pp.
749
757
.
15.
Tissir
,
E. H.
, 2009, “
On Delay Dependent Stability Robustness for Systems With Uncertain Time Varying Delays
,”
Int. J. Ecological Economics and Statistics
0973-1385,
14
, pp.
87
97
.
16.
Li
,
T.
,
Yang
,
B.
,
Wang
,
J.
, and
Zhong
,
C.
, 2003, “
On Stability for Neutral Differential Systems With Mixed Time Varying Delay Arguments
,”
Proceedings of the 42th IEEE Conference on Decision and Control
, pp.
5066
5067
.
17.
Li
,
X.
, and
de Souza
,
C. E.
, 1997, “
Criteria for Robust Stability and Stabilization of Uncertain Linear Systems With State Delay
,”
Automatica
0005-1098,
33
, pp.
1657
1662
.
18.
Finsler
,
P.
, 1937, “
Über das vorkommen definiter semidefiniter formen is scharen quadratischer formen
,”
Commentarii mathematici hevetici
,
9
, pp.
188
192
.
19.
Witrant
,
E.
, 2005, “
Stabilisation des systèmes commandés par réseaux
,” Ph. D. thesis, Institut National Polytechnique, Grenoble, France.
20.
Delgado
,
E.
, and
Barreiro
,
A.
, 2007, “
Stability of Teleoperation Systems for Time Varying Delays by LMI Techniques
,”
European Control Conference
, Kos, Greece, Jul. 2–5.
21.
Ni
,
M. -L.
, and
Er
,
M. J.
, 2002, “
Stability of Linear Systems With Delayed Perturbations: An LMI Approach
,”
IEEE. Trans. Circuits Syst., I: Fundam. Theory Appl.
,
49
, pp.
108
112
.
22.
Fridman
,
E.
, 2001, “
New Lyapunov-Krasovskii Functionals for Stability of Linear Retarded and Neutral Type Systems
,”
Syst. Control Lett.
0167-6911,
43
, pp.
309
319
.
23.
Fridman
,
E.
, and
Shaked
,
U.
, 2003, “
Delay Dependent Stability With H∞ Control: Constant and Time and Time Varying Delays
,”
Int. J. Control
0020-7179,
76
, pp.
48
60
.
24.
Peng
,
C.
,
Tian
,
Y. C.
, and
Tian
,
E.
, 2008, “
Improved Delay Dependent Robust Stabilization Conditions of Uncertain T-S Fuzzy Systems With Time Varying Delay
,”
Comput. Math. Appl.
0898-1221,
159
, pp.
2713
2729
.
25.
Palhares
,
R. M.
,
Campos
,
C. D.
,
Ekel
,
P. Ya.
,
Leles
,
M. C. R.
, and
D’Angelo
,
M. F. S. V.
, 2005, “
Delay Dependent Robust H∞ Control of Uncertain Linear Systems With Time Varying Delays
,”
Fuzzy Sets Syst.
0165-0114,
50
, pp.
13
32
.
26.
Liu
,
X. -G.
,
Wu
,
M.
,
Martin
,
R.
, and
Tang
,
M. -L.
, 2007, “
Delay Dependent Stability Analysis for Uncertain Neutral Systems With Time Varying Delays
,”
Math. Comput. Simul.
0378-4754,
75
, pp.
15
27
.
27.
Lee
,
Y. S.
,
Moon
,
Y. S.
, and
Kwon
,
W. H.
, 2001, “
Delay Dependent Guaranteed Cost Control for Uncertain State Delayed Systems
,”
Proceedings of the American Control Conference
, Arlington VA, Jun. 25–27.
28.
Munir
,
S.
, and
Book
,
W. J.
, 2002, “
Internet-Based Teleoperation Using Wave Variables With Prediction
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
7
, pp.
124
133
.
29.
Huang
,
C.
, 2007, “
Refined Stability Conditions for Linear Uncertain Systems With Multiple Time Varying Delays
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
129
, pp.
91
95
.
30.
Kolmanovskii
,
V.
, and
Richard
,
J. P.
, 1999, “
Stability of Some Linear Systems With Delays
,”
IEEE Trans. Autom. Control
0018-9286,
44
, pp.
984
989
.
31.
Niculescu
,
S. I.
, 2000, “
Further Remarks on Delay Dependent Stability of Linear Neutral Systems
,”
Proceedings of the MTNS
, Perpignan, France.
You do not currently have access to this content.