A combined controller (CT-PBC) by contact task control (CTC) with passivity based controller (PBC) is introduced to control test system of high capacity hydraulic pump (HCHP) to measure its properties. It is compared with a vector controller; a torque feedback based combined controller, and two neural network controllers. The results gained from comparing and analyzing these controllers show that under different outlet pressures of HCHP, CT-PBC has good stability and robustness, which meet the requirements to test HCHP. CT-PBC is also simpler and better than other controllers in general.
1.
Chen
, R. -B.
, Fei
, M. -R.
, Deng
, H. -H.
, and Huang
, Y. -Z.
, 2002, “The Test-Bed of Multi-Intelligent Control Algorithms Based on DSP
,” Proceedings of the First International Conference on Machine Learning and Cybernetics
, Beijing, China, pp. 952
–957
.2.
Grabowski
, P. Z.
, Kazmierkowski
, M. P.
, Bose
, B. K.
, and Blaabjerg
, F.
, 2000, “A Simple Direct-Torque Neuro-Fuzzy Control of PWM-Inverter-Fed Induction Motor Drive
,” IEEE Trans. Ind. Electron.
0278-0046, 47
(4
), pp. 863
–870
.3.
Mondal
, S. K.
, Pinto
, J. O. P.
, and Bose
, B. K.
, 2002, “A Neural Network Based Space Vector PWM Controller for a Three-Level Voltage-Fed Inverter Induction Motor Drive
,” IEEE Trans. Ind. Appl.
0093-9994, 38
(3
), pp. 660
–669
.4.
Romeral
, L.
, Llaquet
, J.
, Aldabas
, E.
, and Arias
, A.
, 2000, “A Simple Fuzzy Adaptive Speed Controller
,” Proceedings of 2000 Industry Applications Conference
, IEEE, New Jersey, pp. 1249
–1256
.5.
Mummadi
, V.
, 2002, “Optimal Control Strategy for a Current Source Inverter Fed Induction Motor
,” Comput. Electr. Eng.
0045-7906, 28
(4
), pp. 255
–267
.6.
Er
, L.
, Lui
, Q.
, Chen
, J.
et al., 2000, “PID Control Based on Neural Networks Compensation
,” Electric Drive
1001-2095, 30
(5
), pp. 3
–5
.7.
Meng
, W.
, Wang
, Z.
, and Qiu
, L.
, 2007, “Analysis for Neural Network Controllers and Passivity-Based Controller on Test System for Aero Hydraulic Pump
,” Twelfth IFToMM World Congress
, Besancon, France, Jun.18–21.8.
Wenjun
, M.
, Dongkai
, S.
, Zhanlin
, W.
, and lihua
, Q.
, 2009, “Vector Control Based Rotating Speed Control Strategies in Aero Hydraulic Pump Test System
,” Chin. J. Mech. Eng.
0577-6686, 45
(3
), pp. 311
–316
.9.
Becherif
, M.
, Ortega
, R.
, Mendes
, E.
, and Lee
, S.
, 2004, “Passivity-Based Control of a Doubly-Fed Induction Generator Interconnected With an Induction Motor
,” Proceedings of the 42nd IEEE Maul
, IEEE, New Jersey, pp. 5657
–5662
.10.
Mason
, M.
, 1981, “Compliance and Force Control for Computer Controlled Manipulator
,” IEEE Trans. Syst. Man Cybern.
0018-9472, 11
, pp. 418
–432
.11.
Hogan
, N.
, 1987, “Stable Execution of Contact Tasks Using Impedance Control
,” Proceedings of the IEEE Conference on Robotics and Automation
, Raleigh, NC, pp. 1047
–1054
.12.
Wu
, Y.
, Tran
, T. J.
, Xi
, N.
, and Isidori
, A.
, 1996, “On Robust Control via Positive Acceleration Feedback for Robot Manipulators
,” International Conference on Robotics and Automation
, Minneapolis, MN, pp. 1891
–1896
.13.
Mills
, J.
, and Lokhorst
, D.
, 1993, “Control of Robotic Manipulators During General Task Execution: A Discontinuous Control Approach
,” Int. J. Robot. Res.
0278-3649, 12
, pp. 146
–163
.14.
Payandeh
, S.
, 1996, “A Method for Controlling Robotic Contact Tasks
,” Robotica
0263-5747, 14
, pp. 281
–288
.15.
Marth
, G.
, Tran
, T. J.
, and Bejczy
, A. K.
, 1993, “Stable Phase Transition Control for Robot Arm Motion
,” Proceedings of the IEEE Conference on Robotics and Automation
, Atlanta, GA, pp. 1566
–1571
.16.
Sekhavat
, I. P.
, and Sepehriz
, N.
, 2001, “Cascade Control of Hydraulic Actuators during Contact Tasks [J]
,” Proceedings of 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation
, Banff, Alberta, Canada, Jul. 29–Aug. 1.17.
Wu
, C.
, and Payandeh
, S.
, 1999, “Toward Smooth Analysis of Robotic Contact Tasks Problem
,” Proceedings of American Control Conference
, pp. 1960
–1964
, San Diego, CA.18.
Niksefat
, N.
, Wu
, Q.
, and Sepehri
, N.
, 2001, “Design of a Lyapunov Controller for an Electro-Hydraulic Actuator During Contact Task
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 123
, pp. 299
–307
.19.
Sekhavat
, P.
, Sepehri
, N.
, and Wu
, Q.
, 2005, “Contact Task Stability Analysis of Hydraulic Actuators Using the Concept of Lyapunov Exponents
. Proceedings of the IEEE International Conference Robotics and Automation
, Barcelona, Spain, pp. 552
–558
.20.
Meng
, W.
, 2005, “Study on Control Strategies of Frequency-Changing Speed-Adjusting for the Testing of Aero Hydraulic Pump System
,” Ph.D. thesis, Beijing University of Aeronautics and Astronautics, p. 6
.21.
Shen
, D.
, 2003, “Research for Frequency-Changing Speed-Adjusting Based Speed-Simulation System
,” Ph.D. thesis, Beijing University of Aeronautics and Astronautics, p. 8
.22.
Yao
, B.
, Bu
, F.
, Reedy
, J.
, and Chiu
, G.
, 1999, “Adaptive Robust Control of Single-Rod Hydraulic Actuators: Theory and Experiments
. Proceedings of the American Control Conference
, San Diego, CA, pp. 759
–763
.23.
Pannett
, R. F.
, Chawdhry
, P. K.
, and Burrows
, C. R.
, 1999, “Alternative Robust Control Strategies for Disturbance Rejection in Fluid Power Systems
,” Proceedings of the ACC Conference
, San Diego, CA, pp. 739
–743
.24.
Watton
, J.
, 1990, “On Linearized Coefficients for an Underlapped Servo-Valve Coupled to a Single-Rod Cylinder
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 112
, pp. 794
–796
.25.
Surdilović
, M.
, and Vukobratovicâ
, M.
, 1996, “One Method for Efficient Dynamic Modeling of Flexible Manipulators
,” Mech. Mach. Theory
0094-114X, 31
(3
), pp. 297
–315
.26.
Surdilović
, D.
, and Vukobratovicâ
, M.
, 1996, “Deflection Compensation for Large Flexible Manipulators
,” Mech. Mach. Theory
0094-114X, 31
(3
), pp. 317
–329
.27.
Kung
, Y. S.
, Liaw
, C. M.
, and Ouyang
, M. S.
, 1995, “Adaptive Speed Control for Induction Motor Drives Using Neural Networks
,” IEEE Trans. Ind. Electron.
0278-0046, 42
, pp. 25
–32
.28.
Juang
, C. F.
, and Lin
, C. T.
, 1999, “A Recurrent Self-Organizing Neural Fuzzy Inference Network
,” IEEE Trans. Neural Netw.
1045-9227, 10
, pp. 828
–845
.29.
Hu
, H.
, Chen
, J.
, Liu
, Q.
, and Er
, L.
, 2000, “Study on PID Control Based Neural Network Compensating
,” Electric Transmission
1001-2095, 30
(5
), pp. 3
–5
.30.
van der Schaft
, A.
, 2000, L2-Gain and Passivity Techniques in Nonlinear Control
, Springer-Verlag
, London
.31.
Gokdere
, L. U.
, and Simaan
, M. A.
, 1997, “A Passivity-Based Method for Induction Motor Control
,” IEEE Trans. Ind. Electron.
0278-0046, 44
(5
), pp. 688
–695
.32.
Teixeira
, E. P.
, Neto
, L. M.
, and Salerno
, C. H.
, 1992, Adaptive Control of Large Induction Motors With Highly Nonlinear Loads Using Neural Networks
, IEEE
, New York
.33.
Mendes
, E.
, and Araiza
, A. T.
, 1997, “Experimental Comparison Between Field Oriented Control and Passivity Based Control of Induction Motors
,” ISIE’97, Guimaraes, Portugal, IEEE Catalog No. 97TH8280.34.
Ortega
, R.
, Zhong
, P. J.
, and Hill
, D. J.
, 1997, Passivity-Based Control of Nonlinear Systems: A Tutorial
,” Proceedings of the American Control Conference
, Albuquerque, NM.35.
Nicklasson
, P. J.
, Ortega
, R.
, and Espinosa-Perez
, G.
, 1994, “Passivity-Based Control of the General Rotating Electrical Machine
,” Proceedings of the 33rd Conference on Decision and Control
, Lake Buena Vista, FL.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.