A heavy payload attached to the wrist force/moment (F/M) sensor of a manipulator can cause the conventional impedance controller to fail in establishing the desired impedance due to the noncontact components of the force measurement, i.e., the inertial and gravitational forces of the payload. This paper proposes an impedance control scheme for such a manipulator to accurately shape its force-response without needing any acceleration measurement. Therefore, no wrist accelerometer or a dynamic estimator for compensating the inertial load forces is required. The impedance controller is further developed using an inner/outer loop feedback approach that not only overcomes the robot dynamics uncertainty, but also allows the specification of the target impedance model in a general form, e.g., a nonlinear model. The stability and convergence of the impedance controller are analytically investigated, and the results show that the control input remains bounded provided that the desired inertia is selected to be different from the payload inertia. Experimental results demonstrate that the proposed impedance controller is able to accurately shape the impedance of a manipulator carrying a relatively heavy load according to the desired impedance model.

1.
Hogan
,
N.
, 1985, “
Impedance Control an Approach to Manipulation: Part I—Theory
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
, pp.
1
7
.
2.
Hogan
,
N.
, 1987, “
Stable Execution of Contact Task Using Impedance Control
,”
Proceedings of the 1987 IEEE International Conference on Robotics and Automation
, pp.
1047
1054
.
3.
Colgate
,
E.
, and
Hogan
,
N.
, 1989, “
An Analysis of Contact Instability in Terms of Passive Physical Equivalents
,”
Proceedings of the 1989 IEEE International Conference on Robotics and Automation
, pp.
404
409
.
4.
Lasky
,
T.
, and
Hsia
,
T. C.
, 1991, “
On Force-Tracking Impedance Control of Robot Manipulator
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
274
280
.
5.
Lu
,
W. -S.
, and
Meng
,
Q. -H.
, 1991, “
Impedance Control With Adaptation for Robotic Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
7
(
3
), pp.
408
415
.
6.
Carelli
,
R.
, and
Kelly
,
R.
, 1991, “
An Adaptive Impedance/Force Controller for Robot Manipulators
,”
IEEE Trans. Autom. Control
0018-9286,
36
(
8
), pp.
967
971
.
7.
Lee
,
S.
, and
Lee
,
H. S.
, 1991, “
Intelligent Control of Manipulators Interfacing With Anuncertain Environment Based on Generalized Impedance
,”
Proceedings of the IEEE Symposium on Intelligent Control
, pp.
61
66
.
8.
Aghili
,
F.
, and
Namvar
,
M.
, 2004, “
A Robust Impedance Matching Scheme for Emulation of Robots
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
2142
2148
.
9.
Jung
,
S.
,
Hsia
,
T. C.
, and
Bonitz
,
R. G.
, 2004, “
Force Tracking Impedance Control of Robot Manipulators Under Unknown Environment
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
12
(
3
), pp.
474
483
.
10.
Khatib
,
O.
, 1987, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE Trans. Rob. Autom.
1042-296X,
3
(
1
), pp.
43
53
.
11.
Fujita
,
M.
, and
Inoue
,
H.
, 1979, “
A Study on Processing of Force Sensor Signals
,”
Proceedings of the First Annual Conference of the Robotics Society of Japan
, pp.
153
160
.
12.
Uchiyama
,
M.
, and
Kitagaki
,
K.
, 1989, “
Dynamics Force Sensing for High-Speed Robot Manipulation Using Kalman Filtering Techniques
,”
Proceedings of the IEEE International Conference on Decision and Control
, pp.
2147
4152
.
13.
Kubus
,
D.
,
Kroger
,
T.
, and
Wahl
,
F. M.
, 2007, “
On-Line Rigid Object Recognition and Pose Estimation Based on Inertial Parameters
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1402
1408
.
14.
Kubus
,
D.
,
Kroger
,
T.
, and
Wahl
,
F. M.
, 2008, “
Improving Force Control Performance by Computational Elimination of Non-Contact Force/Torque
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
2617
2622
.
15.
Garcia
,
J.
,
Robertsson
,
A.
,
Ortega
,
J. G.
, and
Johansson
,
R.
, 2006, “
Generalized Contact Force Estimator for a Robot Manipulator
,”
Proceedings of the IEEE International Conference. on Robotics and Automation
, pp.
4019
4024
.
16.
Aghili
,
F.
, and
Piedbœuf
,
J. -C.
, 2002, “
Contact Dynamics Emulation for Hardware-in-Loop Simulation of Robots Interacting With Environment
,”
Proceedings of the IEEE International Conference on Robotics and Automation
.
17.
Aghili
,
F.
, 2005, “
A Robotic Testbed for Zero-g Emulation of Spacecraft
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1033
1040
.
18.
Aghili
,
F.
,
Namvar
,
M.
, and
Vukovich
,
G.
, 2006, “
Satellite Simulator With a Hydraulic Manipulator
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
3886
3892
.
19.
Ferretti
,
G.
,
Magnani
,
G.
, and
Rocco
,
P.
, 2004, “
Impedance Control of Elastic Joints Industrial Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
3
), pp.
488
498
.
20.
Schneider
,
S. A.
, and
Cannon
,
R. H.
, 1992, “
Object Impedance Control for Cooperative Manipulators: Theory and Experimental Results
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
3
), pp.
383
394
.
21.
Caccavale
,
F.
,
Chiacchio
,
P.
,
Mario
,
A.
, and
Villani
,
L.
, 2008, “
Six-DOF Impedance Control of Dual-Arm Cooperative Manipulators
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
13
(
5
), pp.
576
586
.
22.
Leitmann
,
G.
, 1981, “
On the Efficacy of Nonlinear Control in Uncertain Linear Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
103
(
2
), pp.
95
102
.
23.
Spong
,
M. W.
, and
Vidyasagar
,
M.
, 1989,
Robot Dynamics and Control
,
Wiley
,
New York
, pp.
224
236
.
24.
Whitney
,
D.
, 1985, “
Historical Perspective and State of the Art in Robot Force Control
,”
Proceedings of the 1985 IEEE International Conference on Robotics and Automation
, pp.
262
268
.
25.
Bonitz
,
R.
, and
Hsia
,
T.
, 1996, “
Internal Force-Based Impedance Control for Cooperating Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
1
), pp.
78
89
.
26.
Aghili
,
F.
, and
Piedboeuf
,
J. -C.
, 2006, “
Emulation of Robots Interacting With Environment
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
11
(
1
), pp.
35
46
.
27.
1996,
Theory of Robot Control
,
C.
Canudas de Wit
,
B.
Siciliano
, and
G.
Bastin
, eds.,
Springer
,
London, UK
.
28.
Nakamura
,
Y.
, 1991,
Advanced Robotics: Redundancy and Optimization
,
Addison-Wesley
,
Reading, MA
.
29.
Spong
,
M. W.
, and
Vidyasagar
,
M.
, 1989,
Robot Dynamics and Control
,
Wiley
,
New York
.
30.
Khalil
,
H. K.
, 1992,
Nonlinear Systems
,
Macmillan
,
New York
.
31.
Eppinger
,
S.
, and
Seering
,
W.
, 1986, “
On Dynamic Models of Robot Force Control
,”
Proceedings of the 1986 IEEE International Conference on Robotics and Automation
, pp.
29
34
.
32.
Kazerooni
,
H.
, 1986, “
Robust, Non-Linear Impedance Control for Robot Manipulators
,”
Proceedings of the 1987 IEEE International Conference on Robotics and Automation
, pp.
741
750
.
33.
Lawrence
,
D.
, 1988, “
Impedance Control Stability Properties in Common Implementations
,”
Proceedings of the 1988 IEEE International Conference on Robotics and Automation
, pp.
1185
1190
.
34.
Colgate
,
J.
, 1994, “
Coupled Stability of Multiport Systems—Theory and Experiments
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
(
3
), pp.
419
428
.
35.
Lamarche
,
T.
, 2002, “
CSA Automation and Robotics Testbed: Dynamics model
,” Technical Report No. CSA-ST-CART-2002-002, Canadian Space Agency.
36.
Zhu
,
W. -H.
,
Dupuis
,
E.
, and
Doyon
,
M.
, 2007, “
Adaptive Control of Harmonic Drives
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
129
(
2
), pp.
182
193
.
37.
1998,
DSP Blockset for Use With SIMULINK, User’s Guide
,
The MathWorks Inc.
, Natick, MA.
38.
2002,
Real-Time Workshop for Use With SIMULINK
,
5th ed.
,
The MathWorks Inc.
, Natick, MA.
You do not currently have access to this content.