A probabilistic approach, which exploits the domain and distribution of the uncertain model parameters, has been developed for the design of robust input shapers. Polynomial chaos expansions are used to approximate uncertain system states and cost functions in the stochastic space. Residual energy of the system is used as the cost function to design robust input shapers for precise rest-to-rest maneuvers. An optimization problem, which minimizes any moment or combination of moments of the distribution function of the residual energy is formulated. Numerical examples are used to illustrate the benefit of using the polynomial chaos based probabilistic approach for the determination of robust input shapers for uncertain linear systems. The solution of polynomial chaos based approach is compared with the minimax optimization based robust input shaper design approach, which emulates a Monte Carlo process.

1.
Singer
,
N.
, and
Seering
,
W. P.
, 1990, “
Pre-Shaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
(
1
), pp.
76
82
.
2.
Singh
,
T.
, and
Vadali
,
S. R.
, 1993, “
Robust Time Delay Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
(
2A
), pp.
303
306
.
3.
Hindle
,
T.
, and
Singh
,
T.
, 2001, “
Robust Minimum Power/Jerk Control of Maneuvering Structures
,”
AIAA J.
0001-1452,
24
(
4
), pp.
816
826
.
4.
Junkins
,
J. L.
,
Rahman
,
Z. H.
, and
Bang
,
H.
, 1991, “
Near-Minimum-Time Maneuvers of Flexible Structures by Parameter Optimization
,”
AIAA J.
0001-1452,
14
(
2
), pp.
406
415
.
5.
Singh
,
T.
, and
Singhose
,
W.
, 2002, “
Tutorial on Input Shaping/Time Delay Control of Maneuvering Exible Structures
,”
Proceedings of the American Control Conference
, Anchorage, Alaska.
6.
Singhose
,
W. E.
,
Porter
,
L. J.
, and
Singer
,
N. C.
, 1995, “
Vibration Reduction Using Multi-Hump Extrainsensitive Input Shapers
,”
Proceedings of the American Control Conference
, pp.
3830
3834
.
7.
Singh
,
T.
, 2002, “
Minimax Design of Robust Controllers for Exible Systems
,”
AIAA J.
0001-1452,
25
(
5
), pp.
868
875
.
8.
Chang
,
T. N.
,
Pao
,
L. Y.
, and
Hou
,
E.
, 1997, “
Input Shaper Designs for Minimizing the Expected Level of Residual Vibration in Exible Structures
,”
Proceedings of the American Control Conf
, pp.
3542
3546
.
9.
Tenne
,
D.
, and
Singh
,
T.
, 2004, “
Efficient Minimax Control Design for Prescribed Parameter Uncertainties
,”
AIAA J.
0001-1452,
27
(
6
), pp.
1009
1016
.
10.
Daum
,
F.
, and
Huang
,
J.
, 2003, “
Curse of Dimensionality and Particle Filters
,”
Proceedings of the 2003 IEEE Aerospace Conference
, Mar. 8–15, Vol.
4
, pp.
1979
1993
.
11.
Wiener
,
N.
, 1938, “
The Homogeneous Chaos
,”
Am. J. Math.
0002-9327,
60
(
4
), pp.
897
936
.
12.
Cameron
,
R. H.
, and
Martin
,
W. T.
, 1947, “
The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals
,”
Ann. Math.
0003-486X,
48
(
2
), pp.
385
392
.
13.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York, NY
.
14.
Xiu
,
D.
, and
Em Karniadakis
,
G.
, 2002, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
24
(
2
), pp.
619
644
.
15.
Luenberger
,
D. G.
, 1969,
Optimization by Vector Space Methods
,
Wiley-Interscience
,
New York, NY
.
16.
Singla
,
P.
, and
Junkins
,
J. L.
, 2008, “
Multi-Resolution Methods for Modeling and Control of Dynamical Systems
,”
Applied Mathematics and Nonlinear Science
,
Chapman and Hall/CRC Press
, Boca Raton, FL.
You do not currently have access to this content.