In this paper, a multibody dynamic model is established to simulate the dynamics and control of moving web with its guiding system, where the term moving web is used to describe thin materials, which are manufactured and processed in a continuous, flexible strip form. In contrast with available researches based on Eulerian description and beam assumption, webs are described by Lagrangian formulation with the absolute nodal coordinate formulation (ANCF) plate element, which is based on Kirchhoff’s assumptions that material normals to the original reference surface remain straight and normal to the deformed reference surface, and the nonlinear elasticity theory that accounts for large displacement, large rotation, and large deformation. The rollers and guiding mechanism are modeled as rigid bodies. The distributed frictional contact forces between rollers and web are considered by Hertz contact model and are evaluated by Gauss quadrature. The proportional integral (PI) control law for web guiding is also embedded in the multibody model. A series of simulations on a typical web-guide system is carried out using the multibody dynamics approach for web guiding system presented in this study. System dynamical information, for example, lateral displacement, stress distribution, and driving moment for web guiding, are obtained from simulations. Parameter sensitivity analysis illustrates the effect of influence variables and effectiveness of the PI control law for lateral movement control of web that are verified under different gains. The present Lagrangian formulation of web element, i.e., ANCF element, is not only capable of describing the large movement and deformation but also easily adapted to capture the distributed contact forces between web and rollers. The dynamical behavior of the moving web can be accurately described by a small number of ANCF thin plate elements. Simulations carried out in this paper show that the present approach is an effective method to assess the design of web guiding system with easily available desktop computers.

1.
Shelton
,
J. J.
, and
Reid
,
K. N.
, 1971, “
Lateral Dynamics of a Real Moving Web
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
93
(
3
), pp.
180
186
.
2.
Shelton
,
J. J.
, and
Reid
,
K. N.
, 1971, “
Lateral Dynamics of an Idealized Moving Web
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
93
(
3
), pp.
187
92
.
3.
Young
,
G. E.
, and
Reid
,
K. N.
, 1993, “
Lateral and Longitudinal Dynamic Behavior and Control of Moving Webs
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
(
2B
), pp.
309
317
.
4.
Besteman
,
M.
,
Limpens
,
C. H. L.
,
Babuska
,
R.
,
Otten
,
J. B.
, and
Verhaegen
,
M.
, 1998, “
Modeling and Identification of a Strip Guidance Process With Internal Feedback
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
6
(
1
), pp.
88
102
.
5.
Benson
,
R. C.
, 2002, “
Lateral Dynamics of a Moving Web With Geometrical Imperfection
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
1
), pp.
25
34
.
6.
Jari
,
L.
, 2002, “
FEM Analysis of a Travelling Web
,”
Comput. Struct.
0045-7949,
80
(
24
), pp.
1827
1842
.
7.
Yerashunas
,
J. B.
,
De Abreu-Garcia
,
J. A.
, and
Hartley
,
T. T.
, 2003, “
Control of Lateral Motion in Moving Webs
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
11
(
5
), pp.
684
693
.
8.
Kee-Hyun
,
S.
,
Soon-Oh
,
K.
,
Sang-Hoon
,
K.
, and
Seung-Ho
,
S.
, 2004, “
Feedforward Control of the Lateral Position of a Moving Web Using System Identification
,”
IEEE Trans. Ind. Appl.
0093-9994,
40
(
6
), pp.
1637
1643
.
9.
Shin
,
C. H.
, and
Yoo
,
H. H.
, 2006, “
Dynamic Responses of the In-Plane and Out-of-Plane Vibrations for an Axially Moving Membrane
,”
J. Sound Vib.
0022-460X,
297
(
3–5
), pp.
794
809
.
10.
Hiromu
,
H.
,
Yasuhiro
,
I.
,
Shigeyoshi
,
K.
, and
Chihiro
,
K.
, 2007, “
Prediction of Slippage Onset Condition Between Web and Steel Roller
,”
Microsyst. Technol.
0946-7076,
13
(
8–10
), pp.
965
971
.
11.
Kee-Hyun
,
S.
, and
Soon-Oh
,
K.
, 2007, “
The Effect of Tension on the Lateral Dynamics and Control of a Moving Web
,”
IEEE Trans. Ind. Appl.
0093-9994,
43
(
2
), pp.
403
11
.
12.
Thanhtam
,
H.
,
Hyeunhun
,
S.
, and
Sangyoon
,
L.
, 2008, “
Lateral Position Control of a Moving Web in Roll-to-Roll Processes
,”
2008 IEEE Conference on Robotics, Automation and Mechatronics
, Chengdu, China, pp.
66
71
.
13.
Haug
,
E.
, 1989,
Computer Aided Kinematics and Dynamics of Mechanical Systems. Vol. 1: Basic Methods
,
Allyn & Bacon, Inc.
,
Needham Heights, MA
.
14.
Shabana
,
A. A.
, 2005,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
.
15.
Schiehlen
,
W.
, 2007,
Advanced Multibody System Dynamics
,
Springer-Verlag
,
New York
.
16.
Géradin
,
M.
, and
Cardona
,
A.
, 2001,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
Chichester, England
.
17.
Shabana
,
A. A.
, 1997, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
1384-5640,
1
(
2
), pp.
189
222
.
18.
Shabana
,
A. A.
, 1997, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
1
(
3
), pp.
339
348
.
19.
Shabana
,
A. A.
, 1998, “
Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
16
(
3
), pp.
293
306
.
20.
Yoo
,
W. S.
,
Dmitrochenko
,
O.
, and
Pogorelov
,
D. Y.
, 2005, “
Review of Finite Elements Using Absolute Nodal Coordinates for Large-Deformation Problems and Matching Physical Experiments
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Long Beach, CA, Vol.
6
, pp.
1285
1294
.
21.
Dufva
,
K.
, and
Shabana
,
A. A.
, 2005, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dynamics
,
219
(
4
), pp.
345
355
.
22.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
, 1959,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
23.
Hallquist
,
O. J.
, 2005, LS-DYNA Theory Manual, Livermore Software Technology Corporation.
24.
Goldstein
,
H.
,
Poole
,
C. P.
, and
Safko
,
J. L.
, 2002,
Classical Mechanics
,
Addison-Wesley
,
San Francisco, CA
.
25.
Dorf
,
R. C.
, and
Bishop
,
R. H.
, 2008,
Modern Control System
,
Addison-Wesley
,
MA
.
26.
Hairer
,
E.
, and
Wanner
,
G.
, 1996,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer-Verlag
.
27.
Hashimoto
,
H.
, 1999, “
Air Film Thickness Estimation in Web Handling Processes
,”
ASME J. Tribol.
0742-4787,
121
(
1
), pp.
50
55
.
You do not currently have access to this content.