The design of gain-scheduled strictly positive real (SPR) controllers using numerical optimization is considered. Our motivation is robust, yet accurate motion control of flexible robotic systems via the passivity theorem. It is proven that a family of very strictly passive compensators scheduled via time- or state-dependent scheduling signals is also very strictly passive. Two optimization problems are posed; we first present a simple method to optimize the linear SPR controllers, which compose the gain-scheduled controller. Second, we formulate the optimization problem associated with the gain-scheduled controller itself. Restricting our investigation to time-dependent scheduling signals, the signals are parameterized, and the optimization objective function seeks to find the form of the scheduling signals, which minimizes a combination of the manipulator tip tracking error and the control effort. A numerical example employing a two-link flexible manipulator is used to demonstrate the effectiveness of the optimal gain-scheduling algorithm. The closed-loop system performance is improved, and it is shown that the optimal scheduling signals are not necessarily linear.

1.
Shamma
,
J. S.
, and
Athans
,
M. A.
, 1990, “
Analysis of Gain Scheduled Control for Nonlinear Plants
,”
IEEE Trans. Autom. Control
0018-9286,
35
(
8
), pp.
898
907
.
2.
Shamma
,
J. S.
, and
Athans
,
M. A.
, 1991, “
Guaranteed Properties of Gain Scheduled Control for Linear Parameter-Varying Plants
,”
Automatica
0005-1098,
27
(
3
), pp.
559
564
.
3.
Apkarian
,
P.
, and
Gahinet
,
P.
, 1995, “
A Convex Characterization of Gain-Scheduled H∞ Controllers
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
5
), pp.
853
864
.
4.
Desoer
,
C. A.
, and
Vidyasagar
,
M.
, 1975,
Feedback Systems: Input-Output Properties
,
Academic
,
New York
.
5.
Damaren
,
C. J.
, 1995, “
Passivity Analysis for Flexible Multilink Space Manipulators
,”
AIAA Journal of Guidance, Control, and Dynamics
0731-5090,
18
(
2
), pp.
272
279
.
6.
Damaren
,
C. J.
, 1998, “
Modal Properties and Control System Design for Two-Link Flexible Manipulators
,”
Int. J. Robot. Res.
0278-3649,
17
(
6
), pp.
667
678
.
7.
Christoforou
,
E. G.
, and
Damaren
,
C. J.
, 2000, “
The Control of Flexible-Link Robots Manipulating Large Payloads: Theory and Experiments
,”
J. Rob. Syst.
0741-2223,
17
(
5
), pp.
255
271
.
8.
Ioannou
,
P.
, and
Tao
,
G.
, 1987, “
Frequency Domain Conditions for Strictly Positive Real Functions
,”
IEEE Trans. Autom. Control
0018-9286,
32
(
1
), pp.
53
54
.
9.
Tao
,
G.
, and
Ioannou
,
P.
, 1988, “
Strictly Positive Real Matrices and the Lefschetz-Kalman-Yakubovich Lemma
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
12
), pp.
1183
1185
.
10.
Wen
,
J. T.
, 1988, “
Time Domain and Frequency Domain Conditions for Strict Positive Realness
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
10
), pp.
988
992
.
11.
Damaren
,
C. J.
, 2006, “
Optimal Strictly Positive Real Controllers Using Direct Optimization
,”
J. Franklin Inst.
0016-0032,
343
(
3
), pp.
271
278
.
12.
Forbes
,
J. R.
, 2008, “
Design of Optimal Strictly Positive Real Controllers Using Numerical Optimization for the Control of Large Flexible Space Structures
,” MASc thesis, Aerospace Science and Engineering, University of Toronto, Canada.
13.
Marquez
,
H. J.
, 2003,
Nonlinear Control Systems
,
Wiley
,
Hoboken, NJ
.
14.
Marquez
,
H. J.
, and
Damaren
,
C. J.
, 1995, “
On the Design of Strictly Positive Real Transfer Functions
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
42
(
4
), pp.
214
218
.
15.
Nocedal
,
J.
, and
Wright
,
S. J.
, 2000,
Numerical Optimization
,
2nd ed.
,
Springer
,
London
.
16.
Damaren
,
C. J.
, 1996, “
Gain Scheduled SPR Controllers for Nonlinear Flexible Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
118
(
4
), pp.
698
703
.
You do not currently have access to this content.