A constrained sliding mode control methodology developed by the author is applied to the motion control of an open container filled with liquid. The objective is to control the position of the container to meet the performance and robustness requirements, and to specify a safe operating set, i.e., the set of initial conditions from which the system can be operated without exceeding a prescribed liquid level and additional constraints. A conventional sliding mode regulator is designed first to address nominal performance in the sliding mode. Then, a robustly invariant cylinder formed as the Cartesian product of an ellipsoid, and a closed interval is constructed using linear matrix inequalities. A set of constraint qualification conditions are evaluated to ensure that the intersection of the cylinder and the state constraints is robustly positively invariant, constituting the required operating set. Simulations and experimental results corresponding to a high-speed transfer validate the methodology.

1.
Armenio
,
V.
, 1992, “
Dynamic Behavior of Free Surface Liquids on Ships
,” Ph.D. thesis, Department of Naval Architecture, University of Trieste, Trieste, Italy.
2.
Peterson
,
L.
,
Crawley
,
E. F.
, and
Hansman
,
R.
, 1989, “
Nonlinear Fluid Slosh Coupled to the Dynamics of a Spacecraft
,”
AIAA J.
0001-1452,
27
(
9
), pp.
1230
1240
.
3.
Graham
,
E.
, and
Rodriguez
,
A. M.
, 1952, “
Characteristics of Fuel Motion Which Affect Airplane Dynamics
,”
J. Appl. Mech.
0021-8936,
19
, pp.
381
388
.
4.
Popov
,
G.
,
Sankar
,
S.
,
Sankar
,
T. S.
, and
Vatistas
,
G. H.
, 1993, “
Dynamics of Liquid Sloshing in Horizontal Cylindrical Road Containers
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
207
(
C6
), pp.
399
406
.
5.
Grundelius
,
M.
, 2001, “
Methods for Control of Liquid Slosh
,” MS thesis, Lund Institute of Technology, Lund, Sweden.
6.
Feddema
,
J.
,
Dohrmann
,
C. R.
,
Parker
,
G. G.
,
Robinett
,
R. D.
,
Romero
,
V. J.
, and
Schmitt
,
D. J.
, 1997, “
Control for Slosh-Free Motion of an Open Container
,”
IEEE Control Syst. Mag.
0272-1708,
17
(
1
), pp.
29
36
.
7.
Grundelius
,
M.
, 2000, “
Iterative Optimal Control of Liquid Slosh in an Industrial Packaging Machine
,”
Proceedings of the 39th IEEE Conference on Decision and Control
, Nassau, Bahamas, pp.
3427
3432
.
8.
Blanchini
,
F.
, 1999, “
Set Invariance in Control
,”
Automatica
0005-1098,
35
, pp.
1747
1767
.
9.
Nagumo
,
M.
, 1942, “
Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen
,”
Proc. Phys. Math. Soc. Jpn.
0370-1239,
24
, pp.
272
559
.
10.
O’Dell
,
B.
, and
Misawa
,
E.
, 2002, “
Semi-Ellipsoidal Controlled Invariant Sets for Constrained Linear Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
98
103
.
11.
Innocenti
,
M.
, and
Falorni
,
M.
, 1998, “
State Constrained Sliding Mode Controllers
,”
Proceedings of the American Control Conference
, pp.
104
108
.
12.
Keleher
,
P.
, and
Stonier
,
R.
, 2002, “
Adaptive Terminal Sliding Mode Control of a Rigid Manipulator With Uncertain Dynamics Incorporating State Constraints
,”
Aust. N. Z. Ind. Appl. Math. J.
,
43E
, pp.
E102
E152
.
13.
Richter
,
H.
,
O’Dell
,
B.
, and
Misawa
,
E.
, 2007, “
Robust Positively Invariant Cylinders in Constrained Variable Structure Control
,”
IEEE Trans. Autom. Control
0018-9286,
52
(
11
), pp.
2058
2069
.
14.
Utkin
,
V.
, and
Young
,
K.
, 1978, “
Methods for Constructing Discontinuity Planes in Multidimensional Variable Structure Systems
,”
Autom. Remote Control (Engl. Transl.)
0005-1179,
39
, pp.
1466
1470
.
15.
Edwards
,
C.
, and
Spurgeon
,
S.
, 1990,
Sliding Mode Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
16.
Itkis
,
U.
, 1977,
Control Systems of Variable Structure
,
Wiley
,
New York
.
17.
Slotine
,
J.
, and
Li
,
W.
, 1990,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Utkin
,
V.
, 1992,
Sliding Modes in Control Optimization
,
Springer-Verlag
,
Berlin
.
19.
Richter
,
H.
, 2004, “
Theoretical Tools and Software for Modeling, Simulation and Control Design of Rocket Test Facilities
,”
NASA
Technical Report No. SSTI-8060-0001.
20.
Brockman
,
M. L.
, and
Corless
,
M.
, 1998, “
Quadratic Boundedness of Nominally Linear Systems
,”
Int. J. Control
0020-7179,
71
(
6
), pp.
1105
1117
.
21.
Coulson
,
C.
, 1955,
Waves
,
Interscience Publishers
,
New York
.
22.
Su
,
T. C.
,
Lou
,
J. K.
,
Flipse
,
J. E.
, and
Bridges
,
T. J.
, 1982, “
A Numerical Analysis of Large Amplitude Liquid Sloshing in Baffled Containers
,” Technical Report, U.S. Department of Transportation, Final Report No. MARD-940-82046.
You do not currently have access to this content.