In this paper, two fractional-order linear controllers are proposed to stabilize unstable equilibrium points of a chaotic fractional-order system. The first controller is based on the dynamic output feedback control idea and requires detectability of the linearized model of the fractional-order system on the equilibrium point. The second controller is a dynamic state feedback controller and requires observability of the linearized model. In both considered cases, the stabilizability of the model is assumed. The number of inner states in the second controller is one and therefore its structure is much simpler than the first controller. To illustrate the applicability, these controllers are applied to control chaos in the fractional-order Chen system. Numerical simulations results are presented to evaluate the performance of the proposed controllers.

1.
2007,
Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering
,
J.
Sabatier
,
O.
Agrawal
, and
J. T.
Machado
, eds.,
Springer
,
New York
.
2.
Agrawal
,
O.
,
Machado
,
J. T.
, and
Sabatier
,
J.
, 2004, “
Special Issue on Fractional Derivatives and Their Applications
,”
Nonlinear Dyn.
0924-090X,
38
(
1–2
), pp.
1
489
.
3.
Ortigueira
,
M.
, and
Machado
,
J. T.
, 2006, “
Special Issue on Fractional Calculus Applications in Signals and Systems
,”
Signal Process.
0165-1684,
86
(
10
), pp.
2503
3094
.
4.
Bagley
,
R. L.
, and
Calico
,
R. A.
, 1991, “
Fractional-Order State Equations for the Control of Visco-Elastically Damped Structures
,”
J. Guid. Control Dyn.
0731-5090,
14
, pp.
304
311
.
5.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
, 1997, “
Application of Fractional Derivatives to the Analysis of Damped Vibrations of Viscoelastic Single Mass System
,”
Acta Mech.
0001-5970,
120
, pp.
109
125
.
6.
Engheta
,
N.
, 1996, “
On Fractional Calculus and Fractional Multipoles in Electromagnetism
,”
IEEE Trans. Antennas Propag.
0018-926X,
44
(
4
), pp.
554
566
.
7.
Arkhincheev
,
V. E.
, 1993, “
Anomalous Diffusion in Inhomogeneous Media: Some Exact Results
,”
Modeling, Measurement and Control A: General Physics Electronics and Electrical Engineering
,
26
(
2
), pp.
11
29
.
8.
El-Sayed
,
A. M. A.
, 1996, “
Fractional-Order Diffusion-Wave Equation
,”
Int. J. Theor. Phys.
0020-7748,
35
(
2
), pp.
311
322
.
9.
Le Méhauté
,
A.
and
Crepy
,
G.
, 1983, “
Introduction to Transfer and Motion in Fractal Media: The Geometry of Kinetics
,”
Solid State Ionics
0167-2738,
9–10
, pp.
17
30
.
10.
Nakagawa
,
M.
, and
Sorimachi
,
K.
, 1992, “
Basic Characteristics of a Fractance Device
,”
IEICE Trans. Fundamentals
0916-8508,
75-A
(
12
), pp.
1814
1819
.
11.
Oldham
,
K. B.
, and
Zoski
,
C. G.
, 1983, “
Analogue Instrumentation for Processing Polarographic Data
,”
J. Electroanal. Chem.
0022-0728,
157
, pp.
27
51
.
12.
Chen
,
G.
, and
Friedman
,
G.
, 2005, “
An RLC Interconnect Model Based on Fourier Analysis
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
24
(
2
), pp.
170
183
.
13.
Jenson
,
V. G.
, and
Jeffreys
,
G. V.
, 1977,
Mathematical Methods in Chemical Engineering
,
2nd ed.
,
Academic
,
New York
.
14.
Cole
,
K. S.
, 1993, “
Electric Conductance of Biological Systems
,”
Proceedings of Cold Spring Harbor Symposium Quant. Biol.
, Cold Spring Harbor, NY, pp.
107
116
.
15.
Anastasio
,
T. J.
, 1994, “
The Fractional-Order Dynamics of Brainstem Vestibule-Oculumotor Neurons
,”
Biol. Cybern.
0340-1200,
72
, pp.
69
79
.
16.
Laskin
,
N.
, 2000, “
Fractional Market Dynamics
,”
Physica A
0378-4371,
287
, pp.
482
492
.
17.
2000,
Applications of Fractional Calculus in Physics
,
R.
Hilfer
, ed.,
World Scientific
,
Singapore
.
18.
Podlubny
,
I.
, 1999, “
Fractional-Order Systems and PIλDμ-Controllers
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
1
), pp.
208
214
.
19.
Lune
,
B. J.
, 1994, “
Three-Parameter Tunable Tilt-Integral Derivative (TID) Controller
,” U.S. Patent No. US5371,670.
20.
Oustaloup
,
A.
,
Sabatier
,
J.
, and
Lanusse
,
P.
, 1999, “
From Fractal Robustness to CRONE Control
,”
Fractional Calculus Appl. Anal.
1311-0454,
2
(
1
), pp.
1
30
.
21.
Oustaloup
,
A.
,
Moreau
,
X.
, and
Nouillant
,
M.
, 1996, “
The CRONE Suspension
,”
Control Eng. Pract.
0967-0661,
4
(
8
), pp.
1101
1108
.
22.
Oustaloup
,
A.
,
Mathieu
,
B.
, and
Lanusse
,
P.
, 1995, “
The CRONE Control of Resonant Plants: Application to a Flexible Transmission
,”
Eur. J. Control
0947-3580,
1
(
2
), pp.
113
121
.
23.
Raynaud
,
H. F.
, and
Inoh
,
A. Z.
, 2000, “
State-Space Representation for Fractional-Order Controllers
,”
Automatica
0005-1098,
36
, pp.
1017
1021
.
24.
Monje
,
C. A.
, and
Feliu
,
V.
, 2004, “
The Fractional-Order Lead Compensator
,”
IEEE International Conference on Computational Cybernetics
, Vienna, Austria, Aug. 30–Sep. 1.
25.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammer
,
H. K.
, 1995, “
Chaos in a Fractional-Order Chua’s System
,”
IEEE Trans. Circuits Syst., I
,
42
, pp.
485
490
. 0002-7820
26.
Arena
,
P.
,
Caponetto
,
R.
,
Fortuna
,
L.
, and
Porto
,
D.
, 1997, “
Chaos in a Fractional-Order Duffing System
,”
Proceedings ECCTD
, Budapest, pp.
1259
1262
.
27.
Ahmad
,
W. M.
, and
Sprott
,
J. C.
, 2003, “
Chaos in Fractional-Order Autonomous Nonlinear Systems
,”
Chaos, Solitons Fractals
0960-0779,
16
, pp.
339
351
.
28.
Lu
,
J. G.
, and
Chen
,
G.
, 2006, “
A Note on the Fractional-Order Chen System
,”
Chaos, Solitons Fractals
0960-0779,
27
(
3
), pp.
685
688
.
29.
Lu
,
J. G.
, 2006, “
Chaotic Dynamics of the Fractional-Order Lü System and Its Synchronization
,”
Phys. Lett. A
0375-9601,
354
(
4
), pp.
305
311
.
30.
Li
,
C.
and
Chen
,
G.
, 2004, “
Chaos and Hyperchaos in the Fractional-Order Rössler Equations
,”
Physica A
0378-4371,
341
, pp.
55
61
.
31.
Lu
,
J. G.
, 2005, “
Chaotic Dynamics and Synchronization of Fractional-Order Arneodo’s Systems
,”
Chaos, Solitons Fractals
0960-0779,
26
(
4
), pp.
1125
1133
.
32.
Sheu
,
L. J.
,
Chen
,
H. K.
,
Chen
,
J. H.
,
Tam
,
L. M.
,
Chen
,
W. C.
,
Lin
,
K. T.
, and
Kang
,
Y.
, 2008, “
Chaos in the Newton–Leipnik System With Fractional-Order
,”
Chaos, Solitons Fractals
0960-0779,
36
(
1
), pp.
98
103
.
33.
Andrievskii
,
B. R.
, and
Fradkov
,
A. L.
, 2003, “
Control of Chaos: Methods and Applications. Part I: Methods
,”
Autom. Remote Control (Engl. Transl.)
0005-1179,
64
(
5
), pp.
673
713
.
34.
2003,
Chaos Control: Theory and Applications
,
G.
Chen
and
X.
Yu
, eds.,
Springer-Verlag
,
Berlin, Germany
.
35.
Lin
,
W.
, 2007, “
Global Existence Theory and Chaos Control of Fractional Differential Equations
,”
J. Math. Anal. Appl.
0022-247X,
332
(
1
), pp.
709
726
.
36.
Tsai
,
J. S.
,
Chien
,
T. H.
,
Guo
,
S. M.
,
Chang
,
Y. P.
, and
Shieh
,
L. S.
, 2007, “
State-Space Self-Tuning Control for Stochastic Fractional-Order Chaotic Systems
,”
IEEE Trans. Circuits Syst., I
,
54
(
3
), pp.
632
642
.
37.
Ahmad
,
W. M.
,
El-Khazali
,
R.
, and
Al-Assaf
,
Y.
, 2004, “
Stabilization of Generalized Fractional-Order Chaotic Systems Using State Feedback Control
,”
Chaos, Solitons Fractals
0960-0779,
22
, pp.
141
150
.
38.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
New York
.
39.
Matignon
,
D.
, 1996 “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
Computational Engineering in Systems and Application Multi-Conference, IMACS, IEEE-SMC Proceedings
, Lille, France, Vol.
2
, pp.
963
968
.
40.
Ahmed
,
E.
,
El-Sayed
,
A. M. A.
, and
El-Saka
,
H. A. A.
, 2007, “
Equilibrium Points, Stability and Numerical Solutions of Fractional-Order Predator-Prey and Rabies Models
,”
J. Math. Anal. Appl.
0022-247X,
325
, pp.
542
553
.
41.
Matignon
,
D.
and
d’Andréa Novel
,
B.
, 1996, “
Some Results on Controllability and Observability of Finite-Dimensional Fractional Differential Systems
,”
Computational Engineering in Systems Applications, IMACS, IEEE-SMC
, Lille, France, Vol.
2
, pp.
952
956
.
42.
Matignon
,
D.
, and
d’Andréa Novel
,
B.
, 1997, “
Observer-Based Controllers for Fractional Differential Systems
,”
Conference on Decision and Control, IEEE-CSS, SIAM
, San Diego, CA, pp.
4967
4972
.
43.
Chen
,
Y. Q.
,
Ahn
,
H. S.
, and
Xue
,
D.
, 2006, “
Robust Controllability of Interval Fractional-Order Linear Time Invariant Systems
,”
Signal Process.
0165-1684,
86
(
10
), pp.
2794
2802
.
44.
Wang
,
Z.
,
Cao
,
G.
, and
Zhu
,
X.
, 2006, “
Research on the Stability, Controllability and Observability for Fractional-Order LTI Systems
,”
J. Harbin Inst. Technol.
1005-9113,
13
(
5
), pp.
580
583
.
45.
Zeng
,
Q.
,
Cao
,
G.
, and
Zhu
,
X.
, 2005, “
Research on Controllability for a Class of Fractional-Order Linear Control Systems
,”
J. Syst. Eng. Electron.
,
16
(
2
), pp.
376
381
.
46.
Bettayeb
,
M.
, and
Djennoune
,
S.
, 2008, “
New Results on Controllability and Observability of Fractional Dynamical Systems
,”
J. Vib. Control
1077-5463,
14
(
9–10
), pp.
1531
1541
.
47.
Micu
,
S.
, and
Zuazua
,
E.
, 2006, “
On the Controllability of a Fractional-Order Parabolic Equation
,”
SIAM J. Control Optim.
0363-0129,
44
(
6
), pp.
1950
1972
.
48.
El-Ghaffar
,
A. A.
, 2001, “
Observability for Singular Control Systems of Fractional-Order
,”
J. Fractional Calculus
0918-5402,
19
, pp.
79
88
.
49.
Abd El-Ghaffar
,
A.
,
Moubarak
,
M. R. A.
, and
Shamardan
,
A. B.
, 2000, “
Controllability of Fractional Nonlinear Control System
,”
J. Fractional Calculus
0918-5402,
17
, pp.
59
69
.
50.
Moubarak
,
M. R. A.
, 1999, “
Singular Control Systems of Fractional-Order
,”
J. Fractional Calculus
0918-5402,
16
, pp.
19
26
.
51.
Hotzel
,
R.
, and
Fliess
,
M.
, 1998, “
On Linear Systems With a Fractional Derivation: Introductory Theory and Examples
,”
Math. Comput. Simul.
0378-4754,
45
, pp.
385
395
.
52.
Kailath
,
T.
, 1980,
Linear Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
53.
Huijberts
,
H.
, 2006, “
Linear Controllers for the Stabilization of Unknown Steady States of Chaotic Systems
,”
IEEE Trans. Circuits Syst., I
,
53
(
10
), pp.
2246
2254
.
54.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
, 2002, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
0924-090X,
29
, pp.
3
22
.
55.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2007, “
Unreliability of Frequency Domain Approximation in Recognising Chaos in Fractional Order Systems
,”
IET Signal Processing
,
1
(
4
), pp.
171
181
.
56.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2007, “
A Necessary Condition for Double Scroll Attractor Existence in Fractional Order Systems
,”
Phys. Lett. A
0375-9601,
367
(
1–2
), pp.
102
113
.
57.
Chen
,
G.
, and
Ueta
,
T.
, 1999, “
Yet Another Attractor
,”
Int. J. Bifurcat. Chaos Appl. Sci. Eng.
,
9
(
7
), pp.
1465
1466
.
58.
Deng
,
W.
, and
Li
,
C.
, 2005, “
Synchronization of Chaotic Fractional Chen System
,”
J. Phys. Soc. Jpn.
0031-9015,
74
(
6
), pp.
1645
1648
.
59.
Muir
,
T. A.
, 1960,
Treatise on the Theory of Determinants
,
Dover
,
New York
.
60.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
, 1990, “
Controlling Chaos
,”
Phys. Rev. Lett.
0031-9007,
64
, pp.
1196
1199
.
61.
Chanfreau
,
P.
, and
Lyyjynen
,
H.
, 1999, “
Viewing the Efficiency of Chaos Control
,”
J. Nonlinear Math. Phys.
1402-9251,
6
(
3
), pp.
314
331
.
62.
Tavazoei
,
M. S.
,
Haeri
,
M.
,
Bolouki
,
S.
, and
Siami
,
M.
, 2008, “
Stability Preservation Analysis for Frequency Based Methods in Numerical Simulation of Fractional Order Systems
,”
SIAM J. Numer. Anal.
,
47
(
1
), pp.
321
338
.
You do not currently have access to this content.