This paper proposes controller design methods, specially for track-following control of the magnetic read/write head in a hard disk drive (HDD). The servo system to be considered is a general dual-stage multisensing system, which encompasses most of the track-following configurations encountered in the HDD industry, including the traditional single-stage system. For the general system, a robust track-following problem is formulated as a time-varying version of the robust H2 synthesis problem. Both dynamic and real parametric uncertainties, which are typical model uncertainties in track-following control, are taken into account in the formulation. Three optimal robust controller design techniques with different robustness guarantees are applied to solve the synthesis problem. These are mixed H2/H, mixed H2/μ, and robust H2 syntheses. Advantages and disadvantages of each method are presented. Multirate control, which is inherent to control problems in HDDs, is obtained by reducing multirate problems into linear time-invariant ones, for which there are many useful theories and algorithms available. Most of the techniques proposed in this paper heavily rely on efficient numerical tools for solving linear matrix inequalities.

1.
Dullerud
,
G. E.
, and
Lall
,
S.
, 1999, “
A New Approach for Analysis and Synthesis of Time-Varying Systems
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
8
), pp.
1486
1497
.
2.
Lall
,
S.
, and
Dullerud
,
G.
, 2001, “
An LMI Solution to the Robust Synthesis Problem for Multi-Rate Sampled-Data Systems
,”
Automatica
0005-1098,
37
(
12
), pp.
1909
1922
.
3.
Huang
,
X.
,
Nagamune
,
R.
, and
Horowitz
,
R.
, 2006, “
A Comparison of Multirate Robust Track-Following Control Synthesis Techniques for Dual-Stage and Multisensing Servo Systems in Hard Disk Drives
,”
IEEE Trans. Magn.
0018-9464,
42
(
7
), pp.
1896
904
.
4.
Peters
,
M. A.
, and
Iglesias
,
P. A.
, 1997,
Minimum Entropy Control for Time-Varying Systems. Systems & Control: Foundations & Applications
,
Birkhäuser
,
Boston, MA
.
5.
Nesterov
,
Y.
, and
Nemirovskii
,
A.
, 1994,
Interior-Point polynomial Algorithms in Convex Programming
,
SIAM
,
Philadelphia, PA
.
6.
Sturm
,
J. F.
, 1999, “
Using SEDUMI 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones
,” (Special Issue on Interior Point Methods),
Optim. Methods Software
1055-6788,
11
, pp.
625
653
.
7.
Gahinet
,
P.
,
Nemirovski
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M.
, 1995,
LMI Control Toolbox User’s Guide
,
The MathWorks, Inc.
,
Natick, MA
.
8.
Löfberg
,
J.
, 2004, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
Proceedings of the CACSD Conference
, Taipei, Taiwan. Available from http://control.ee.ethz.ch/~joloef/yalmip.phphttp://control.ee.ethz.ch/~joloef/yalmip.php
9.
Bernstein
,
D. S.
, and
Haddad
,
W. H.
, 1989, “
LQG Control With an H∞ Performance Bound: A Riccati Equation Approach
,”
IEEE Trans. Autom. Control
0018-9286,
34
(
3
), pp.
293
305
.
10.
Khargonekar
,
P.
, and
Rotea
,
M.
, 1991, “
Mixed H2/H∞ Control: A Convex Optimization Approach
,”
IEEE Trans. Autom. Control
0018-9286,
36
, pp.
824
837
.
11.
Scherer
,
C.
,
Gahinet
,
P.
, and
Chilali
,
M.
, 1997, “
Multiobjective Output-Feedback Control via LMI Optimization
,”
IEEE Trans. Autom. Control
0018-9286,
42
(
7
), pp.
896
911
.
12.
Masubuchi
,
I.
,
Ohara
,
A.
, and
Suda
,
N.
, 1998, “
LMI-Based Controller Synthesis: A Unified Formulation and Solution
,”
Int. J. Robust Nonlinear Control
1049-8923,
8
(
8
), pp.
669
686
.
13.
Packard
,
A.
, and
Doyle
,
J. C.
, 1993, “
The Complex Structured Singular Value
,”
Automatica
0005-1098,
29
(
1
), pp.
71
109
.
14.
Young
,
P. M.
, 1996, “
Controller Design With Real Parametric Uncertainty
,”
Int. J. Control
0020-7179,
65
(
3
), pp.
469
509
.
15.
Balas
,
G.
,
Chiang
,
R.
,
Packard
,
A.
, and
Safonov
,
M.
, 2005,
Robust Control Toolbox for Use With MATLAB
,
The Mathworks, Inc.
,
Natick, MA
.
16.
Young
,
P. M.
, and
Doyle
,
J. C.
, 1996, “
Properties of the Mixed μ Problem and Its Bounds
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
1
), pp.
155
159
.
17.
Tits
,
A. L.
, and
Chou
,
Y. S.
, 2000, “
On Mixed-μ Synthesis
,”
Automatica
0005-1098,
36
, pp.
1077
1079
.
18.
Kanev
,
S.
,
Scherer
,
C.
,
Verhaegen
,
M.
, and
De Schutter
,
B.
, 2004, “
Robust Output-Feedback Controller Design via Local BMI Optimization
,”
Automatica
0005-1098,
40
, pp.
1115
-
1127
.
19.
Iwasaki
,
T.
, and
Skelton
,
R. E.
, 1995, “
The XY-Centering Algorithm for the Dual LMI Problem: A New Approach to Fixed Order Control Design
,”
Int. J. Control
0020-7179,
62
(
6
), pp.
1257
1272
.
20.
Iwasaki
,
T.
, 1999, “
The Dual Iteration for Fixed-Order Control
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
4
), pp.
783
788
.
21.
de Callafon
,
R. A.
,
Nagamune
,
R.
, and
Horowitz
,
R.
, 2006, “
Robust Dynamic Modeling and Control of Dual-Stage Actuators
,”
IEEE Trans. Magn.
0018-9464,
42
(
2
), pp.
247
54
.
22.
Li
,
Y.
, and
Horowitz
,
R.
, 2002, “
Design and Testing of Track-Following Controllers for Dual-Stage Servo Systems With PZT Actuated Suspensions
,”
Microsyst. Technol.
0946-7076,
8
, pp.
194
205
.
23.
Li
,
Y.
,
Marcassa
,
F.
,
Horowitz
,
R.
,
Oboe
,
R.
, and
Evans
,
R.
, 2003, “
Track-Following Control With Active Vibration Damping of a PZT-Actuated Suspension Dual-Stage Servo System
,”
Proceedings of the American Control Conference
, Vol.
3
.
24.
Abramovitch
,
D.
,
Hurst
,
T.
, and
Henze
,
D.
, 1998, “
An Overview of the PES Pareto Method for Decomposing Baseline Noise Sources in Hard Disk Position Error Signals
,”
IEEE Trans. Magn.
0018-9464,
34
(
1
), pp.
17
23
.
25.
Ehrlich
,
R.
, and
Curran
,
D.
, 1999, “
Major HDD TMR Sources and Projected Scaling With TPI
,”
IEEE Trans. Magn.
0018-9464,
35
, pp.
885
891
.
26.
Varga
,
A.
, 2000, “
Balanced Truncation Model Reduction of Periodic Systems
,”
Proceedings of the 39th IEEE Conference on Decision and Control
, Sydney, Australia, pp.
2379
2384
.
27.
Sandberg
,
H.
, and
Rantzer
,
A.
, 2004, “
Balanced Truncation of Linear Time-Varying Systems
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
2
), pp.
217
229
.
You do not currently have access to this content.