Abstract

This paper provides a novel method of constructing an internal model-based design of reference tracking and/or disturbance rejection for a class of linear time-varying plants with a known linear time invariant (LTI) exosystem. It is shown how the realization of an appropriate time-varying internal model can be constructed by means of a novel feedback mechanism. The design of the internal model consists of two ingredients: (1) a time-varying system immersion of the exosystem, and (2) an automatic generation of the desired control input to render the error-zeroing subspace invariant, based on the complete knowledge of the plant model. The important features of the proposed method lie in that the tracking problem setup and the proposed feedback mechanism allow us to avoid explicitly calculating the desired input, which keeps the regulated error identically at zero. Moreover the time-varying immersion is guaranteed to hold for the class of plant models under consideration. These features significantly broaden the range of applications of the proposed method, and simplify the control implementation process.

1.
Davison
,
E. J.
, 1976, “
The Robust Control of a Servomechanism Problem for Linear Time-Invariant Multivariable Systems
,”
IEEE Trans. Autom. Control
0018-9286,
21
(
1
), pp.
25
34
.
2.
Francis
,
B. A.
, 1977, “
The Linear Multivariable Regulator Problem
,”
SIAM J. Control Optim.
0363-0129,
15
(
3
), pp.
486
505
.
3.
Francis
,
B. A.
, and
Wonham
,
W. M.
, 1976, “
The Internal Model Principle of Control Theory
,”
Automatica
0005-1098,
12
(
5
), pp.
457
465
.
4.
Isidori
,
A.
, and
Byrnes
,
C. I.
, 1990, “
Output Regulation of Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
35
(
2
), pp.
131
140
.
5.
Inoue
,
T.
,
Nakano
,
M.
, and
Iwai
,
S.
, 1981, “
High Accuracy Control of a Proton Synchrotron Magnet Power Supply
,”
Proceedings of the Eighth World Congress of IFAC
, pp.
216
221
.
6.
Hara
,
S.
,
Yamamoto
,
Y.
,
Omata
,
T.
, and
Nakano
,
M.
, 1988, “
Repetitive Control Systems: A New Type Servo System for Periodic Exogenous Signals
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
7
), pp.
659
668
.
7.
Tsao
,
T. -C.
, and
Tomizuka
,
M.
, 1994, “
Robust Adaptive and Repetitive Digital Tracking Control and Application to Hydraulic Servo for Noncircular Machining
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
(
1
), pp.
24
32
.
8.
Nakano
,
M.
,
She
,
L. -H.
,
Mastuo
,
Y.
, and
Hino
,
T.
, 1996, “
Elimination of Position-Dependent Disturbances in Constant Speed Rotation Control Systems
,”
Control Eng. Pract.
0967-0661,
4
(
9
), pp.
1241
1248
.
9.
Tsao
,
T. -C.
, and
Pong
,
K. C.
, 1991, “
Control of Radial Runout in Multi-Tooth Face Milling
,” Transactions of NAMRI/SME, pp.
183
190
.
10.
Chin
,
Y. K.
, and
Coats
,
F. -E.
, 1986, “
Engine Dynamics: Time-Based Versus Crank-Angle Based
,” SAE Technical Paper Series 860412.
11.
Sun
,
Z.
, 2004, “
Tracking or Rejecting Rotational-Angle Dependent Signals Using Time Varying Repetitive Control
,”
Proceedings of the 2004 American Control Conference
, Boston, MA, pp.
144
149
.
12.
Chen
,
C. L.
, and
Chiu
,
T. -C.
, 2008, “
Spatially Periodic Disturbance Rejection With Spatially Sampled Robust Repetitive Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
130
(
2
), p.
021002
.
13.
Pinzoni
,
S.
, 1993, “
Output Regulation of Linear Time-Varying Systems
,”
Proceedings of the 12th IFAC World Congress
, Sydney, Australia, pp.
311
313
.
14.
Marino
,
R.
, and
Tomei
,
P.
, 2000, “
Robust Adaptive Regulation of Linear Time-Varying Systems
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
7
), pp.
1301
1311
.
15.
Ichikawa
,
A.
, and
Katayama
,
H.
, 2006, “
Output Regulation of Time-Varying Systems
,”
Syst. Control Lett.
0167-6911,
55
, pp.
999
1005
.
16.
Zhang
,
Z.
, and
Serrani
,
A.
, 2006, “
The Linear Periodic Output Regulation Problem
,”
Syst. Control Lett.
0167-6911,
55
(
7
), pp.
518
529
.
17.
Byrnes
,
C. I.
,
Delli Priscoli
,
F.
, and
Isidori
,
A.
, 1997,
Output Regulation of Uncertain Nonlinear Systems
,
Birkhäuser
,
Boston, MA
.
18.
Byrnes
,
C. I.
,
Delli Priscoli
,
F.
,
Isidori
,
A.
, and
Kang
,
W.
, 1997, “
Structurally Stable Output Regulation of Nonlinear Systems
,”
Automatica
0005-1098,
33
(
3
), pp.
369
385
.
19.
Huang
,
J.
, 1995, “
Asymptotic Tracking and Disturbance Rejection in Uncertain Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
6
), pp.
1118
1122
.
20.
Huang
,
J.
, and
Chen
,
Z.
, 2004, “
A General Framework for Tackling the Output Regulation Problem
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
12
), pp.
2203
2218
.
21.
Zhang
,
Z.
, and
Serrani
,
A.
, 2009, “
Adaptive Robust Output Regulation of Uncertain Linear Periodic Systems
,”
IEEE Trans. Autom. Control
0018-9286,
54
(
2
), pp.
266
278
.
22.
Silverman
,
L. M.
, and
Meadows
,
H. E.
, 1967, “
Controllability and Observability in Time-Variable Linear Systems
,”
SIAM J. Control Optim.
0363-0129,
5
(
1
), pp.
64
73
.
23.
Silverman
,
L. M.
, 1966, “
Transformation of Time-Variable Systems to Canonical (Phase-Variable) Form
,”
IEEE Trans. Autom. Control
0018-9286,
11
(
2
), pp.
300
303
.
24.
Tsakalis
,
K. S.
, and
Ioannou
,
P. A.
, 1993, “
Linear Time-Varying Systems: Control and Adaptation
,”
Advances in Industrial Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
25.
Bolzern
,
P.
, and
Colaneri
,
P.
, 1988, “
The Periodic Lyapunov Equation
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
9
(
4
), pp.
499
512
.
26.
Kamen
,
E. W.
, 1996, “
Fundamentals of Linear Time-Varying Systems
,”
The Control Handbook
, Vol.
1
,
W. S.
Levine
, ed.,
CRC Press Inc.
,
Boca Raton, FL
.
You do not currently have access to this content.