Quantitative studies of material properties and interfaces using the atomic force microscope (AFM) have important applications in engineering, biotechnology, and chemistry. Contrary to what the name suggests, the AFM actually measures the displacement of a microscale probe, so one must determine the stiffness of the probe to find the force exerted on a sample. Numerous methods have been proposed for determining the spring constant of AFM cantilever probes, yet most neglect the mass of the probe tip. This work explores the effect of the tip mass on AFM calibration using the method of Sader (1995, “Method for the Calibration of Atomic Force Microscope Cantilevers,” Rev. Sci. Instrum., 66, pp. 3789) and extends that method to account for a massive, rigid tip. One can use this modified method to estimate the spring constant of a cantilever from the measured natural frequency and Q-factor for any mode of the probe. This may be helpful when the fundamental mode is difficult to measure or to check for inaccuracies in the calibration obtained with the fundamental mode. The error analysis presented here shows that if the tip is not considered, then the error in the static stiffness is roughly of the same order as the ratio of the tip’s mass to the cantilever beam’s. The area density of the AFM probe is also misestimated if the tip mass is not accounted for, although the trends are different. The model presented here can be used to identify the mass of a probe tip from measurements of the natural frequencies of the probe. These concepts are applied to six low spring-constant, contact-mode AFM cantilevers, and the results suggest that some of the probes are well modeled by an Euler–Bernoulli beam with a constant cross section and a rigid tip, while others are not. One probe is examined in detail, using scanning electron microscopy to quantify the size of the tip and the thickness uniformity of the probe, and laser Doppler vibrometry is used to measure the first four mode shapes. The results suggest that this probe’s thickness is significantly nonuniform, so the models upon which dynamic calibration is based may not be appropriate for this probe.

1.
Garcia
,
R.
, and
Perez
,
R.
, 2002, “
Dynamic Atomic Force Microscopy Methods
,”
Surf. Sci. Rep.
0167-5729,
47
, pp.
197
301
.
2.
Carpick
,
R. W.
, and
Salmeron
,
M.
, 1997, “
Scratching the surface: Fundamental Investigations of Tribology With Atomic Force Microscopy
,”
Chem. Rev.
,
97
(
4
), pp.
1163
1194
.
3.
Lee
,
G. U.
,
Kidwell
,
D. A.
, and
Colton
,
R. J.
, 1994, “
Sensing Discrete Streptavidin-Biotin Interactions With Atomic Force Microscopy
,”
Langmuir
0743-7463,
10
, pp.
354
357
.
4.
Florin
,
E. L.
,
Moy
,
V. T.
, and
Gaub
,
H. E.
, 1994, “
Adhesion Forces Between Individual Ligand-Receptor Pairs
,”
Science
0036-8075,
264
, pp.
415
417
.
5.
Moy
,
V. T.
,
Florin
,
E. -L.
, and
Gaub
,
H. E.
, 1994, “
Intermolecular Forces and Energies Between Ligands and Receptors
,”
Science
0036-8075,
266
, pp.
257
259
.
6.
Cross
,
S. E.
,
Jin
,
Y. -S.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
, 2007, “
Nanomechanical Analysis of Cells From Cancer Patients
,”
Nat. Nanotechnol.
1748-3387,
2
, pp.
780
783
.
7.
Cross
,
S. E.
,
Jin
,
Y. -S.
,
Tondre
,
J.
,
Wong
,
R.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
, 2008, “
AFM-Based Analysis of Human Metastatic Cancer Cells
,”
Nanotechnology
0957-4484,
19
, pp.
384003
.
8.
Sader
,
J. E.
,
Larson
,
I.
,
Mulvaney
,
P.
, and
White
,
L. R.
, 1995, “
Method for the Calibration of Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
0034-6748,
66
, pp.
3789
3798
.
9.
Sader
,
J. E.
,
Chon
,
J. W. M.
, and
Mulvaney
,
P.
, 1999, “
Calibration of Rectangular Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
0034-6748,
70
, pp.
3967
3969
.
10.
Hutter
,
J. L.
, and
Bechhoefer
,
J.
, 1993, “
Calibration of Atomic-Force Microscope Tips
,”
Rev. Sci. Instrum.
0034-6748,
64
, pp.
1868
1873
.
11.
Senden
,
T. J.
, and
Ducker
,
W. A.
, 1994, “
Experimental Determination of Spring Constants in Atomic Force Microscopy
,”
Langmuir
0743-7463,
10
, pp.
1003
1004
.
12.
Tortonese
,
M.
, and
Kirk
,
M.
, 1997, “
Characterization of Application Specific Probes for SPMs
,”
Proc. SPIE
0277-786X,
3009
, pp.
53
60
.
13.
Cleveland
,
J. P.
,
Manne
,
S.
,
Bocek
,
D.
, and
Hansma
,
P. K.
, 1993, “
A Nondestructive Method for Determining the Spring Constant of Cantilevers for Scanning Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
64
, pp.
403
405
.
14.
Burnham
,
N. A.
,
Chen
,
X.
,
Hodges
,
C. S.
,
Matei
,
G. A.
,
Thoreson
,
E. J.
,
Roberts
,
C. J.
,
Davies
,
M. C.
, and
Tendler
,
S. J. B.
, 2003, “
Comparison of Calibration Methods for Atomic-Force Microscopy Cantilevers
,”
Nanotechnology
0957-4484,
14
, pp.
1
6
.
15.
Butt
,
H. J.
, and
Jaschke
,
M.
, 1995, “
Calculation of Thermal Noise in Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
6
, pp.
1
7
.
16.
Schaffer
,
T. E.
, 2005, “
Calculation of Thermal Noise in an Atomic Force Microscope With a Finite Optical Spot Size
,”
Nanotechnology
0957-4484,
16
, pp.
664
670
.
17.
Cook
,
S. M.
,
Schaffer
,
T. E.
,
Chynoweth
,
K. M.
,
Wigton
,
M.
,
Simmonds
,
R. W.
, and
Lang
,
K. M.
, 2006, “
Practical Implementation of Dynamic Methods for Measuring Atomic Force Microscope Cantilever Spring Constants
,”
Nanotechnology
0957-4484,
17
, pp.
2135
2145
.
18.
Proksch
,
R.
,
Schaffer
,
T. E.
,
Cleveland
,
J. P.
,
Callahan
,
R. C.
, and
Viani
,
M. B.
, 2004, “
Finite Optical Spot Size and Position Corrections in Thermal Spring Constant Calibration
,”
Nanotechnology
0957-4484,
15
, pp.
1344
1350
.
19.
Higgins
,
M. J.
,
Proksch
,
R.
,
Sader
,
J. E.
,
Polcik
,
M.
,
Endoo
,
S. M.
,
Cleveland
,
J. P.
, and
Jarvis
,
S. P.
, 2006, “
Noninvasive Determination of Optical Lever Sensitivity in Atomic Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
77
, p.
013701
.
20.
Ohler
,
B.
, 2007, “
Cantilever Spring Constant Calibration Using Laser Doppler Vibrometry
,”
Rev. Sci. Instrum.
0034-6748,
78
, p.
063701
.
21.
Ohler
,
B.
, 2007, “
Application Note #94: Practical Advice on the Determination of Cantilever Spring Constants
,” Veeco Application Notes, http://www.veeco.com/libraryhttp://www.veeco.com/library.
22.
Butt
,
H.- J.
,
Cappella
,
B.
, and
Kappl
,
M.
, 2005, “
Force Measurements With the Atomic Force Microscope: Technique, Interpretation and Applications
,”
Surf. Sci. Rep.
0167-5729,
59
, pp.
1
152
.
23.
Green
,
C. P.
,
Lioe
,
H.
,
Cleveland
,
J. P.
,
Proksch
,
R.
,
Mulvaney
,
P.
, and
Sader
,
J. E.
, 2004, “
Normal and Torsional Spring Constants of Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
0034-6748,
75
, pp.
1988
1996
.
24.
Viani
,
M. B.
,
Schaffer
,
T. E.
,
Paloczi
,
G. T.
,
Pietrasanta
,
L. I.
,
Smith
,
B. L.
,
Thompson
,
J. B.
,
Richter
,
M.
,
Rief
,
M.
,
Gaub
,
H. E.
,
Plaxco
,
K. W.
,
Cleland
,
A. N.
,
Hansma
,
H. G.
, and
Hansma
,
P. K.
, 1999, “
Fast Imaging and Fast Force Spectroscopy of Single Biopolymers With a New Atomic Force Microscope Designed for Small Cantilevers
,”
Rev. Sci. Instrum.
0034-6748,
70
, pp.
4300
4303
.
25.
Ginsberg
,
J. H.
, 2001,
Mechanical and Structural Vibrations
,
1st ed.
,
Wiley
,
New York
.
26.
Yamanaka
,
K.
,
Ogisoa
,
H.
, and
Kolosov
,
O.
, 1994, “
Ultrasonic Force Microscopy for Nanometer Resolution Subsurface Imaging
,”
Appl. Phys. Lett.
0003-6951,
64
, pp.
178
180
.
27.
Crittenden
,
S.
,
Raman
,
A.
, and
Reifenberger
,
R.
, 2005, “
Probing Attractive Forces at the Nanoscale Using Higher-Harmonic Dynamic Force Microscopy
,”
Phys. Rev. B
0163-1829,
72
, pp.
235422
.
28.
Sahin
,
O.
,
Quate
,
C. F.
,
Solgaard
,
O.
, and
Atalar
,
A.
, 2004, “
Resonant Harmonic Response in Tapping-Mode Atomic Force Microscopy
,”
Phys. Rev. B
0163-1829,
69
, pp.
165416
.
29.
Sahin
,
O.
,
Yaralioglu
,
G.
,
Grow
,
R.
,
Zappe
,
S. F.
,
Atalar
,
A.
,
Quate
,
C.
, and
Solgaard
,
O.
, 2004, “
High-Resolution Imaging of Elastic Properties Using Harmonic Cantilevers
,”
Sensors and Actuators A: Physical
,
114
, pp.
183
190
.
30.
Proksch
,
R.
, 2006, “
Multifrequency, Repulsive-Mode Amplitude-Modulated Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
113121
.
31.
Lozano
,
J. R.
, and
Garcia
,
R.
, 2008, “
Theory of Multifrequency Atomic Force Microscopy
,”
Phys. Rev. Lett.
0031-9007,
100
, p.
076102
.
32.
Sader
,
J. E.
, 1998, “
Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
0021-8979,
84
, pp.
64
76
.
33.
Melcher
,
J.
,
Hu
,
S.
, and
Raman
,
A.
, 2007, “
Equivalent Point-Mass Models of Continuous Atomic Force Microscope Probes
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
053101
.
34.
Sader
,
J. E.
,
Pacifico
,
J.
,
Green
,
C. P.
, and
Mulvaney
,
P.
, 2005, “
General Scaling Law for Stiffness Measurement of Small Bodies With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
0021-8979,
97
, p.
124903
.
35.
To
,
C. W. S.
, 1982, “
Vibration of a Cantilever Beam With a Base Excitation and Tip Mass
,”
J. Sound Vib.
0022-460X,
83
, pp.
445
460
.
36.
Oguamanam
,
D. C. D.
, 2003, “
Free Vibration of Beams With Finite Mass Rigid Tip Load and Flexural-Torsional Coupling
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
963
979
.
37.
Mahdavi
,
M. H.
,
Farshidianfar
,
A.
,
Tahani
,
M.
,
Mahdavi
,
S.
, and
Dalir
,
H.
, 2008, “
A More Comprehensive Modeling of Atomic Force Microscope Cantilever
,”
Ultramicroscopy
0304-3991,
109
, pp.
54
60
.
38.
Allen
,
M.
,
Sumali
,
H.
, and
Epp
,
D.
, 2008, “
Piecewise-Linear Restoring Force Surfaces for Semi-Nonparametric Identification of Nonlinear Systems
,”
Nonlinear Dyn.
0924-090X,
54
, pp.
123
135
.
You do not currently have access to this content.