This article presents an iterative-based feedforward-feedback control approach to achieve high-speed atomic force microscope (AFM) imaging. AFM-imaging requires precision positioning of the probe relative to the sample in all x-y-z axes directions. Particularly, this article is focused on the vertical z-axis positioning. Recently, a current-cycle-feedback iterative-learning-control (CCF-ILC) approach has been developed for precision tracking of a given desired trajectory (even when the desired trajectory is unknown), which can be applied to achieve precision tracking of sample profile on one scanline. In this article, we extend this CCF-ILC approach to imaging of entire sample area. The main contribution of this article is the convergence analysis and the use of the CCF-ILC approach for output tracking in the presence of desired trajectory varation between iterations—the sample topography variations between adjacent scanlines. For general case where the desired trajectory variation occurs between any two successive iterations, the convergence (stability) of the CCF-ILC system is addressed and the allowable size of desired trajectory variation is quantified. The performance improvement achieved by using the CCF-ILC approach is discussed by comparing the tracking error of using the CCF-ILC technique to that of using feedback control alone. The efficacy of the proposed CCF-ILC control approach is illustrated by implementing it to the z-axis control during AFM-imaging. Experimental results are presented to show that the AFM-imaging speed can be substantially increased.

1.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
, 1986, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
0031-9007,
56
(
9
), pp.
930
934
.
2.
Lee
,
K. -B.
,
Park
,
S. -J.
,
Mirkin
,
C. A.
,
Smith
,
J. C.
, and
Mrksich
,
M.
, 2002, “
Protein Nanoarrays Generated by Dip-Pen Nanotithography
,”
Science
0036-8075,
295
(
5560
), pp.
1702
1705
.
3.
García
,
R.
,
Magerle
,
R.
, and
Perez
,
R.
, 2007, “
Nanoscale Compositional Mapping With Gentle Forces
,”
Nature Mater.
1476-1122,
6
, pp.
405
411
.
4.
Chew
,
C. M.
,
Ristic
,
R. I.
,
Dennehy
,
R. D.
, and
Yoreo
,
J. J. D.
, 2004, “
Crystallization of Paracetamol Under Oscillatory Flow Mixing Conditions
,”
Cryst. Growth Des.
1528-7483,
4
, pp.
1045
1052
.
5.
Croft
,
D.
,
Shedd
,
G.
, and
Devasia
,
S.
, 2001, “
Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
(
1
), pp.
35
43
.
6.
Radmacher
,
M.
, 1997, “
Measuring the Elastic Properties of Biological Samples With the AFM
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
16
, pp.
47
57
.
7.
Khurshudov
,
A.
,
Kato
,
K.
, and
Koide
,
H.
, 1997, “
Wear of the AFM Diamond Tip Sliding Against Silicon
,”
Wear
0043-1648,
203
, pp.
22
27
.
8.
Tien
,
S.
,
Zou
,
Q.
, and
Devasia
,
S.
, 2005, “
Control of Dynamics-Coupling Effects in Piezo-Actuator for High-Speed AFM Operation
,”
IEEE Trans. Contr. Syst. Technol.
,
13
(
6
), pp.
921
931
. 1063-6536
9.
Salapaka
,
S.
,
Sebastian
,
A.
,
Cleveland
,
J. P.
, and
Salapaka
,
M. V.
, 2002, “
High Bandwidth Nano-Positioner: A Robust Control Approach
,”
Rev. Sci. Instrum.
0034-6748,
73
(
9
), pp.
3232
3241
.
10.
Wu
,
Y.
, and
Zou
,
Q.
, 2007, “
Iterative Control Approach to Compensate for Both the Hysteresis and the Dynamics Effects of Piezo Actuators
,”
IEEE Trans. Contr. Syst. Technol.
,
15
, pp.
936
944
. 1063-6536
11.
El Rifai
,
O. M.
, and
Youcef-Toumi
,
K.
, 2004, “
Trade-Offs and Performance Limitations in Mechatronic Systems: A Case Study
,”
Annu. Rev. Control
1367-5788,
28
(
2
), pp.
181
192
.
12.
Hu
,
S.
, and
Raman
,
A.
, 2006, “
Chaos in Atomic Force Microscopy
,”
Phys. Rev. Lett.
0031-9007,
96
(
3
), p.
036107
.
13.
Schitter
,
G.
,
Menold
,
P.
,
Knapp
,
H.
,
Allgower
,
F.
, and
Stemmer
,
A.
, 2001, “
High Performance Feedback for Fast Scanning Atomic Force Microscopes
,”
Rev. Sci. Instrum.
0034-6748,
72
(
8
), pp.
3320
3327
.
14.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 2005,
Multivariable Feedback control: Analysis and Design
, 2nd ed.,
Wiley
,
New York
.
15.
Zou
,
Q.
, and
Devasia
,
S.
, 2004, “
Preview-Based Optimal Inversion for Output Tracking: Application to Scanning Tunneling Microscopy
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
12
(
3
), pp.
375
386
.
16.
Qiu
,
L.
, and
Davison
,
E. J.
, 1993, “
Performance Limitations of Non-Minimum Phase Systems in the Servomechanism Problem
,”
Automatica
0005-1098,
29
, pp.
337
349
.
17.
Schitter
,
G.
,
Stemmer
,
A.
, and
Allgower
,
F.
, 2003, “
Robust 2DOF-Control of a Piezoelectric Tube Scanner for High-Speed Atomic Force Microscopy
,”
Proceedings of 2003 American Control Conference
, pp.
3720
3725
.
18.
Wu
,
Y.
,
Zou
,
Q.
, and
Su
,
C.
, 2009, “
A Current Cycle Feedback Iterative Learning Control Approach to AFM Imaging
,”
IEEE Trans. Nanotechnol.
1536-125X,
8
, pp.
515
527
.
19.
Wu
,
Y.
, and
Zou
,
Q.
, 2009, “
Inversion-Based 2DOF-Control Design for Output Tracking: Piezoelectric Actuator Example
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
17
, pp.
1069
1082
.
20.
Rifai
,
O. M. E.
, and
Youcef-Toumi
,
K.
, 2002, “
Dynamics of Atomic Force Microscopes: Experiments and Simulations
,”
Proceedings of the 2002 IEEE Conference on Control Applications
, pp.
1126
1131
.
21.
Verwoerd
,
M.
,
Meinsma
,
G.
, and
de Vries
,
T.
, 2006, “
On Admissible Pairs and Equivalent Feedback—Youla Parameterization in Iterative Learning Control
,”
Automatica
0005-1098,
42
, pp.
2079
2089
.
22.
Rothe
,
H.
,
Hueser
,
D.
,
Kasper
,
A.
, and
Rinder
,
T.
, 1999, “
Investigations of Smooth Surfaces by Measuring the BRDF With a Stray Light Sensor in Comparison With PSD Curves Evaluated From Topography of Large AFM Scans
,”
Proc. SPIE
0277-786X,
3619
, pp.
112
120
.
23.
Kipper
,
M. J.
,
Shen
,
E.
,
Determan
,
A.
, and
Narasimhan
,
B.
, 2002, “
Design of an Injectable System Based on Bioerodible Polyanhydride Microspheres for Sustained Drug Delivery
,”
Biomaterials
0142-9612,
23
, pp.
4405
4412
.
24.
Machida
,
S.
, and
Nakayama
,
T.
, 2006, “
Temperature-Dependent Growth of Smooth DNA Film
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
45
(
6
), pp.
5183
5185
.
25.
Ying
,
W.
, and
Zou
,
Q.
, 2007, “
Robust-Inversion-Based 2DOF-Control Design for Output Tracking: Piezoelectric Actuator Example
,”
IEEE Conference on Decision and Control
, pp.
2451
2457
.
26.
Li
,
J.
, and
Tsao
,
T. -C.
, 2001, “
Robust Performance Repetitive Control Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
330
337
.
27.
Rifai
,
O. M. E.
, and
Youcef-Toumi
,
K.
, 2001, “
Coupling in Piezoelectric Tube Scanners Used in Scanning Probe Microscopes
,”
Proceedings of the American Control Conference
, pp.
3251
3255
.
28.
Wu
,
Y.
,
Shi
,
J.
,
Su
,
C.
, and
Zou
,
Q.
, 2009, “
A Control Approach to Cross-Coupling Compensation of Piezotube Scanners in Tapping-Mode Imaging
,”
Rev. Sci. Instrum.
0034-6748,
80
, p.
043709
.
You do not currently have access to this content.