This paper studies repetitive control (RC) with linear phase lead compensation to precisely track periodic trajectories in piezo-based scanning probe microscopes (SPMs). Quite often, the lateral scanning motion in SPMs during imaging or nanofabrication is periodic. Dynamic and hysteresis effects in the piezoactuator cause significant tracking error. To minimize the tracking error, commercial SPMs commonly use proportional-integral-derivative (PID) feedback controllers; however, the residual error of PID control can be excessively large, especially at high scan rates. In addition, the error repeats from one operating cycle to the next. To account for the periodic tracking error, a discrete-time RC is designed, analyzed, and implemented on an atomic force microscope (AFM). The advantages of RC include straightforward digital implementation and it can be plugged into an existing feedback control loop, such as PID, to enhance performance. The proposed RC incorporates two phase lead compensators to ensure robustness and minimize the steady-state tracking error. Simulation and experimental results from an AFM system compare the performance among (1) PID, (2) standard RC, and (3) the modified RC with phase lead compensation. The results show that the latter reduces the steady-state tracking error to less than 2% at 25 Hz scan rate, an over 80% improvement compared with PID control.

1.
Salapaka
,
S. M.
, and
Salapaka
,
M. V.
, 2008, “
Scanning Probe Microscopy
,”
IEEE Control Syst. Mag.
0272-1708,
28
(
2
), pp.
65
83
.
2.
Jalili
,
N.
, and
Laxminarayana
,
K.
, 2004, “
A Review of Atomic Force Microscopy Imaging Systems: Application to Molecular Metrology and Biological Sciences
,”
Mechatronics
0957-4158,
14
(
8
), pp.
907
945
.
3.
Campbell
,
P. M.
, and
Snow
,
E. S.
, 1996, “
Proximal Probe-Based Fabrication of Nanostructures
,”
Semicond. Sci. Technol.
0268-1242,
11
, (
1s
), pp.
1558
1562
.
4.
Barrett
,
R. C.
, and
Quate
,
C. F.
, 1991, “
Optical Scan-Correction System Applied to Atomic Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
62
(
6
), pp.
1393
1399
.
5.
Hu
,
H.
, and
Mrad
,
R. B.
, 2002, “
On the Classical Preisach Model for Hysteresis in Piezoceramic Actuators
,”
Mechatronics
0957-4158,
13
(
2
), pp.
85
94
.
6.
Croft
,
D.
,
Shed
,
G.
, and
Devasia
,
S.
, 2001, “
Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
35
43
.
7.
Francis
,
B. A.
, and
Wonham
,
W. M.
, 1976, “
The Internal Model Principle of Control Theory
,”
Automatica
0005-1098,
12
(
5
), pp.
457
465
.
8.
Inoue
,
T.
,
Nakano
,
M.
, and
Iwai
,
S.
, 1981, “
High Accuracy Control of a Proton Synchrotron Magnet Power Supply
,”
Proceedings of the Eighth World Congress IFAC
, pp.
216
221
.
9.
Hara
,
S.
,
Yamamoto
,
Y.
,
Omata
,
T.
, and
Nakano
,
M.
, 1988, “
Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
7
), pp.
659
668
.
10.
Abramovitch
,
D. Y.
,
Andersson
,
S. B.
,
Pao
,
L. Y.
, and
Schitter
,
G.
, 2007, “
A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes
,”
American Control Conference
, New York, pp.
3488
3502
.
11.
Chew
,
K. K.
, and
Tomizuka
,
M.
, 1990, “
Digital Control of Repetitive Errors in Disk Drive Systems
,”
IEEE Control Syst. Mag.
0272-1708,
10
(
1
), pp.
16
20
.
12.
Steinbuch
,
M.
,
Weiland
,
S.
, and
Singh
,
T.
, 2007, “
Design of Noise and Period-Time Robust High-Order Repetitive Control, With Application to Optical Storage
,”
Automatica
0005-1098,
43
(
12
), pp.
2086
2095
.
13.
Michels
,
L.
,
Pinheiro
,
H.
, and
Grundling
,
H. A.
, 2004, “
Design of Plug-In Repetitive Controllers for Single-Phase PWM Inverters
,”
IEEE Industry Applications Annual Conference
,
1
, pp.
163
170
.
14.
Li
,
C. J.
, and
Li
,
S. Y.
, 1996, “
To Improve Workpiece Roundness in Precision Diamond Turning by In Situ Measurement and Repetitive Control
,”
Mechatronics
0957-4158,
6
(
5
), pp.
523
535
.
15.
Chen
,
S. -L.
, and
Hsieh
,
T. -H.
, 2007, “
Repetitive Control Design and Implementation for Linear Motor Machine Tool
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
12–13
), pp.
1807
1816
.
16.
Ghosh
,
J.
, and
Paden
,
B.
, 2000, “
Nonlinear Repetitive Control
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
5
), pp.
949
953
.
17.
Choi
,
G. S.
,
Lim
,
Y. A.
, and
Choi
,
G. H.
, 2002, “
Tracking Position Control of Piezoelectric Actuators for Periodic Reference Inputs
,”
Mechatronics
0957-4158,
12
(
5
), pp.
669
684
.
18.
Rifai
,
O. M. E.
, and
Youcef-Toumi
,
K.
, 2002, “
Creep in Piezoelectric Scanners of Atomic Force Microscopes
,”
Proceedings of American Control Conference
, Anchorage, AK, pp.
3777
3782
.
19.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
, 1984, “
Bettering Operation of Robots by Learning
,”
J. Rob. Syst.
0741-2223,
1
(
2
), pp.
123
140
.
20.
Moore
,
K. L.
,
Dahleh
,
M.
, and
Bhattacharyya
,
S. P.
, 1992, “
Iterative Learning Control: A Survey and New Results
,”
J. Rob. Syst.
0741-2223,
9
(
5
), pp.
563
594
.
21.
Leang
,
K. K.
, and
Devasia
,
S.
, 2006, “
Design of Hysteresis-Compensating Iterative Learning Control for Piezo Positioners: Application to Atomic Force Microscopes
,”
Mechatronics
0957-4158,
16
(
3–4
), pp.
141
158
.
22.
Wu
,
Y.
, and
Zou
,
Q.
, 2007, “
Iterative Control Approach to Compensate for Both the Hysteresis and the Dynamics Effects of Piezo Actuators
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
936
944
.
23.
Hill
,
M. D.
,
White
,
G. S.
,
Hwang
,
C. -S.
, and
Lloyd
,
I. K.
, 1996, “
Cyclic Damage in Lead Zirconate Titanate
,”
J. Am. Ceram. Soc.
0002-7820,
79
(
7
), pp.
1915
1920
.
24.
Lowrie
,
F.
,
Cain
,
M.
,
Stewart
,
M.
, and
Gee
,
M.
, 1999, “
Time Dependent Behaviour of Piezo-Electric Materials
,” National Physical Laboratory Technical Report No. 151.
25.
Lee
,
H. -J.
, and
Saravanos
,
D. A.
, 1998, “
The Effect of Temperature Dependent Material Properties on the Response of Piezoelectric Composite Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
9
(
7
), pp.
503
508
.
26.
Fantner
,
G. E.
,
Hegarty
,
P.
,
Kindt
,
J. H.
,
Schitter
,
G.
,
Cidade
,
G. A. G.
, and
Hansma
,
P. K.
, 2005, “
Data Acquisition System for High Speed Atomic Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
76
(
2
), p.
026118
.
27.
Schitter
,
G.
,
Astrom
,
K. J.
,
DeMartini
,
B. E.
,
Thurner
,
P. J.
,
Turner
,
K. L.
, and
Hansma
,
P. K.
, 2007, “
Design and Modeling of a High-Speed AFM-Scanner
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
906
915
.
28.
Leang
,
K. K.
, and
Fleming
,
A. J.
, 2009, “
High-Speed Serial-Kinematic AFM Scanner: Design and Drive Considerations
,”
Asian J. Control
,
11
(
2
), pp.
144
153
. 1561-8625
29.
Leyva-Ramos
,
J.
,
Escobar
,
G.
,
Martinez
,
P. R.
, and
Mattavelli
,
P.
, 2005, “
Analog Circuits to Implement Repetitive Controllers for Tracking and Disturbance Rejection of Periodic Signals
,”
IEEE Trans. Circuits Syst.
0098-4094,
52
(
8
), pp.
466
470
.
30.
Tomizuka
,
M.
,
Tsao
,
T. C.
, and
Chew
,
K. K.
, 1988, “
Discrete Time Domain Analysis and Synthesis of Repetitive Controllers
,”
American Control Conference
, pp.
860
866
.
31.
Ratcliffe
,
J. D.
,
Lewin
,
P. L.
, and
Rogers
,
E.
, 2005, “
Stable Repetitive Control by Frequency Aliasing
,”
Intelligent Control Systems and Optimization
, pp.
323
326
.
32.
Broberg
,
H. L.
, and
Molyet
,
R. G.
, 1994, “
A New Approach to Phase Cancellation in Repetitive Control
,”
IEEE Industry Applications Society Annual Meeting
, Vol.
3
, pp.
1766
1770
.
33.
Wang
,
Y.
,
Wang
,
D.
,
Zhang
,
B.
,
Zhou
,
K.
, and
Ye
,
Y.
, 2006, “
Robust Repetitive Control With Linear Phase Lead
,”
American Control Conference
, Minneapolis, MN, Vol.
2006
, pp.
232
237
.
34.
Yamada
,
M.
,
Riadh
,
Z.
, and
Funahashi
,
Y.
, 1999, “
Design of Discrete-Time Repetitive Control System for Pole Placement and Application
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
4
(
2
), pp.
110
118
.
35.
Zhou
,
K.
, and
Doyle
,
J. C.
, 1998,
Essentials of Robust Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Leang
,
K. K.
, and
Devasia
,
S.
, 2007, “
Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
927
935
.
37.
Ahn
,
H. -S.
, 2003, “
Design of a Repetitive Control System for a Piezoelectric Actuator Based on the Inverse Hysteresis Model
,”
The Fourth International Conference on Control and Automation
, Montreal, Canada, pp.
128
132
.
38.
Shan
,
Y.
, and
Leang
,
K. K.
, 2009, “
Repetitive Control With Prandtl-Ishlinskii Hysteresis Inverse for Piezo-Based Nanopositioning
,”
American Control Conference
, St. Louis, MO.
39.
Tien
,
S.
,
Zou
,
Q.
, and
Devasia
,
S.
, 2005, “
Iterative Control of Dynamics-Coupling-Caused Errors in Piezoscanners During High-Speed AFM Operation
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
6
), pp.
921
931
.
40.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
, 2006,
Feedback Control of Dynamic Systems
,
5th ed
.
You do not currently have access to this content.