This work provides an analysis of the steady state response of a prototype repetitive controller applied to a class of nonlinear systems, i.e., systems with actuator saturation. First, it is shown that the steady state solution of the closed loop nonlinear system can be obtained by an iterative Picard process, which establishes the periodic nature of the steady state solution. Second, the conditions for obtaining bounded steady state responses are analyzed for a saturating nonlinearity commonly found in mechatronic applications. Valuable insight is provided into the effects of input signals and saturating actuators on the closed loop performance of a prototype repetitive controller. In order to improve the transient closed loop response, a simple antiwindup strategy tailored to repetitive controllers is proposed.

1.
Chen
,
Y. Q.
,
Moore
,
K.
,
Yu
,
J.
, and
Zhang
,
T.
, 2006, “
Iterative Learning Control and Repetitive Control in Hard Disk Drive Industry—A Tutorial
,”
Proceedings of the IEEE International Conference on Decision and Control
, San Diego, CA, pp.
13
15
.
2.
Li
,
C.
,
Zhang
,
D.
, and
Zhuang
,
X.
, 2004, “
A Survey of Repetitive Control
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Sendai, Japan, Vol.
2
, pp.
1160
1166
.
3.
Escobar
,
G.
,
Leyva-Ramos
,
J.
,
Martinez
,
P. R.
, and
Valdez
,
A. A.
, 2005, “
A Repetitive-Based Controller for the Boost Converter to Compensate the Harmonic Distortion of the Output Voltage
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
3
), pp.
500
508
.
4.
Liang
,
J.
,
Green
,
T. C.
,
Weiss
,
G.
, and
Zhong
,
Q. C.
, 2002, “
Evaluation of Repetitive Control for Power Quality Improvement of Distributed Generation
,”
Proceedings of the IEEE Power Electronics Specialist Conference
, pp.
1803
1808
.
5.
Ma
,
C. C. H.
, 1990, “
Stability Robustness of Repetitive Control System With Zero Phase Compensation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
320
324
.
6.
Vidal
,
P.
, 1968,
Systèmes échantillonnes non linéaires
,
Dunod
,
Paris
.
7.
Telang
,
N.
, and
Hunt
,
L. R.
, 2001, “
Frequency Domain Computations for Nonlinear Steady State Solutions
,”
IEEE Trans. Signal Process.
1053-587X,
49
(
8
), pp.
1728
1733
.
8.
Galttfelder
,
A. H.
, and
Schaufelberger
,
W.
, 2003,
Control Systems With Input and Output Constraints
,
Springer-Verlag
,
London
.
9.
Grimm
,
G.
,
Teel
,
A. R.
, and
Zaccarian
,
L.
, 2008, “
The l2 Anti-Wind Up Problem for Discrete-Time Linear Systems: Definitions and Solutions
,”
Syst. Control Lett.
0167-6911,
57
, pp.
356
364
.
10.
Gomes da Silva
,
J. M.
, and
Tarbouriech
,
S.
, 2006, “
Anti-Windup Design With Guaranteed Regions of Stability for Discrete-Linear Systems
,”
Syst. Control Lett.
0167-6911,
55
, pp.
184
192
.
11.
Rönnbäck
,
S.
,
Hillerström
,
G.
, and
Sternby
,
J.
, 1993, “
Periodic-Disturbance Rejection and Set-Point Tracking With Application to a Peristaltic Pump
,”
Proceedings of the European Control Conference
, Groningen, The Netherlands, pp.
202
208
.
12.
Ryu
,
Y. S.
, and
Longman
,
R. W.
, 1994, “
Use of Anti-Reset Windup in Integral Control Based Learning and Repetitive Control
,”
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics
, Vol.
3
, pp.
2617
2622
.
13.
Francis
,
B. A.
, and
Wonham
,
W. M.
, 1975, “
The Internal Model Principle for Linear Multivariable Regulators
,”
Appl. Math. Optim.
0095-4616,
2
, pp.
170
194
.
14.
Tomizuka
,
M.
,
Tsao
,
T. C.
, and
Chew
,
K. K.
, 1989, “
Analysis and Synthesis of Discrete-Time Repetitive Controllers
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
111
(
2
), pp.
353
358
.
15.
Tomizuka
,
M.
, 1987, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
109
(
1
), pp.
65
68
.
16.
Meserve
,
W. E.
, and
Torng
,
H. C.
, 1961, “
Investigation of Periodic Modes of Sample-Data Control Systems Containing a Saturating Element
,”
ASME. J. Basic Eng.
,
D83
(
1
), pp.
77
81
. 0021-9223
17.
Rönnbäck
,
S.
, 1993, “
Linear Control of Systems With Actuator Constraints
,” Ph.D. thesis, Luleå University of Technology, Sweden.
18.
Chen
,
Ch. L.
, and
Chiu
,
G. T.
, 2008, “
Spatially Periodic Disturbance Rejection With Spatially Sampled Robust Repetitive Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
130
(
2
), pp.
77
81
.
You do not currently have access to this content.