Among other applications, accelerometer arrays have been used extensively in crashworthiness to measure the acceleration field of the head of a dummy subjected to impact. As it turns out, most accelerometer arrays proposed in the literature were analyzed on a case-by-case basis, often not knowing what components of the rigid-body acceleration field the sensor allows to estimate. We introduce a general model of accelerometer behavior, which encompasses the features of all acclerometer arrays proposed in the literature, with the purpose of determining their scope and limitations. The model proposed leads to a classification of accelerometer arrays into three types: point-determined; tangentially determined; and radially determined. The conditions that define each type are established, then applied to the three types drawn from the literature. The model proposed lends itself to a symbolic manipulation, which can be readily automated, with the purpose of providing an evaluation tool for any acceleration array, which should be invaluable at the development stage, especially when a rich set of variants is proposed.

1.
Schuler
,
A. R.
, 1965, “
Design and Analysis of Analytic Platform Inertial Navigation Systems
,” Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.
2.
Grammatikos
,
A.
, 1965, “
Gimballess Inertial Systems for Space Navigation
,” Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.
3.
Mertz
,
H. J.
, 1967, “
Kinematics and Kinetics of Whiplash
,” Ph.D. thesis, Wayne State University, Detroit, MI.
4.
Padgaonkar
,
A. J.
,
Krieger
,
K. W.
, and
King
,
A. I.
, 1975, “
Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers
,”
ASME J. Appl. Mech.
0021-8936,
42
, pp.
552
556
.
5.
Chou
,
C. C.
, and
Sinha
,
S. C.
, 1976, “
On the Kinematics of the Head Using Linear Acceleration Measurements
,”
J. Biomech.
0021-9290,
9
, pp.
607
613
.
6.
Luan
,
F.
,
Yang
,
K. H.
,
Deng
,
B.
,
Begeman
,
P. C.
,
Tashman
,
S.
, and
King
,
A. I.
, 2000, “
Qualitative Analysis of Neck Kinematics During Low-Speed Rear-End Impact
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
15
(
9
), pp.
649
657
.
7.
Linder
,
A.
,
Svensson
,
M.
, and
Viano
,
D.
, 2002, “
Evaluation of the BioRID P3 and the Hybrid III in Pendulum Impacts to the Back: A Comparison With Human Subject Test Data
,”
Traffic Inj. Prev.
,
3
, pp.
159
166
. 1538-9588
8.
Anderson
,
R. W. G.
,
Brown
,
C. J.
,
Blumbergs
,
P. C.
,
McLean
,
A. J.
, and
Jones
,
N. R.
, 2003, “
Impact Mechanics and Axonal Injury in a Sheep Model
,”
J. Neurotrauma
0897-7151,
20
(
10
), pp.
961
974
.
9.
McIntosh
,
A. S.
,
Kallieris
,
D.
, and
Frechede
,
B.
, 2007, “
Neck Injury Tolerance Under Inertial Loads in Side Impacts
,”
Accid. Anal Prev.
0001-4575,
39
(
2
), pp.
326
333
.
10.
Giansanti
,
D.
, and
Maccioni
,
G.
, 2005, “
Comparison of Three Different Kinematic Sensor Assemblies for Locomotion Studies
,”
Physiol. Meas.
,
26
(
5
), pp.
689
705
. 0967-3334
11.
Newman
,
J. A.
,
Beusenberg
,
M. C.
,
Shewchenko
,
N.
,
Withnall
,
C.
, and
Fournier
,
E.
, 2005, “
Verification of Biomechanical Methods Employed in a Comprehensive Study of Mild Traumatic Brain Injury and the Effectiveness of American Football Helmets
,”
J. Biomech.
0021-9290,
38
(
7
), pp.
1469
1481
.
12.
Śpiewak
,
S.
,
Jitpraphai
,
T.
, and
Nickel
,
T.
, 1999, “
“Grey Box” Model Based Visualisation of Vibrations in Mechanical Systems
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
15
(
10
), pp.
743
748
.
13.
Nusholtz
,
G. S.
, 1993, “
Geometric Methods in Determining Rigid-Body Dynamics
,”
Exp. Mech.
0014-4851,
33
(
2
), pp.
153
158
.
14.
Shea
,
R. T.
, and
Viano
,
D. C.
, 1994, “
Computing Body Segment Trajectories in the Hybrid III Dummy Using Linear Accelerometer Data
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
37
43
.
15.
Crisco
,
J. J.
,
Chu
,
J. J.
, and
Greenwald
,
R. M.
, 2004, “
An Algorithm for Estimating Acceleration Magnitude and Impact Location Using Multiple Nonorthogonal Single-Axis Accelerometers
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
849
854
.
16.
Yoganandan
,
N.
,
Zhang
,
J.
,
Pintar
,
F. A.
, and
Liu
,
Y. K.
, 2006, “
Lightweight Low-Profile Nine-Accelerometer Package to Obtain Head Angular Accelerations in Short-Duration Impacts
,”
J. Biomech.
0021-9290,
39
(
7
), pp.
1347
1354
.
17.
Duma
,
S. M.
,
Manoogian
,
S. J.
,
Bussone
,
W. R.
,
Brolinson
,
P. G.
,
Goforth
,
M. W.
,
Donnenwerth
,
J. J.
,
Greenwald
,
R. M.
,
Chu
,
J. J.
, and
Crisco
,
J. J.
, 2005, “
Analysis of Real-Time Head Accelerations in Collegiate Football Players
,”
Clin. J. Sport Med.
1050-642X,
15
(
1
), pp.
3
8
.
18.
Viano
,
D. C.
,
Pellman
,
E. J.
,
Withnall
,
C. W.
, and
Shewchenko
,
N.
, 2006, “
Concussion in Professional Football: Performance of Newer Helmet in Reconstructed Game Impacts—Part 13
,”
Neurosurgery
0148-396X,
59
(
3
), pp.
591
606
.
19.
Kane
,
T. R.
,
Hayes
,
W. C.
, and
Priest
,
J. D.
, 1974, “
Experimental Determination of Forces Exerted in Tennis Play
,”
Biomechanics IV
, pp.
284
290
.
20.
van den Bogert
,
A. J.
,
Read
,
L.
, and
Nigg
,
B. M.
, 1996, “
A Method for Inverse Dynamic Analysis Using Accelerometry
,”
J. Biomech.
0021-9290,
29
(
7
), pp.
949
954
.
21.
Morris
,
J. R. W.
, 1973, “
Accelerometry—A Technique for the Measurement of Human Body Movements
,”
J. Biomech.
0021-9290,
6
, pp.
729
736
.
22.
Hayes
,
W. C.
,
Gran
,
J. D.
,
Nagurka
,
M. L.
,
Feldman
,
J. M.
, and
Oatis
,
C.
, 1983, “
Leg Motion Analysis During Gait By Multiaxial Accelerometry: Theoretical Foundations and Preliminary Validations
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
283
289
.
23.
Algrain
,
M. C.
, and
Quinn
,
J.
, 1993, “
Accelerometer Based Line-of-Sight Stabilization Approach for Pointing and Tracking Systems
,”
Proceedings of Second IEEE Conference on Control Applications
, Vancouver, Canada, pp.
159
163
.
24.
Parsa
,
K.
,
Angeles
,
J.
, and
Misra
,
A. K.
, 2005, “
Estimation of the Flexural States of a Macro-Micro Manipulator Using Point-Acceleration Data
,”
IEEE Trans. Robot.
,
21
(
4
), pp.
565
573
. 1546-1904
25.
Lin
,
P.-C.
,
Komsuoglu
,
H.
, and
Koditschek
,
D.
, 2006, “
Sensor Data Fusion for Body State Estimation in a Hexapod Robot With Dynamical Gaits
,”
IEEE Trans. Robot.
,
22
(
5
), pp.
932
943
. 1546-1904
26.
Miles
,
M. D.
, 1986, “
Measurement of Six-Degree of Freedom Model Motions Using Strapdown Accelerometers
,”
21st American Towing Tank Conference
, Washington DC, pp.
369
375
.
27.
Subramanian
,
V. A.
, and
Vendhan
,
C. P.
, 1993, “
An Efficient Algorithm for Strapdown Accelerometer-Based Motion Measurement
,”
Ocean Eng.
0029-8018,
20
(
4
), pp.
421
432
.
28.
Peng
,
Y. K.
, and
Golnaraghi
,
M. F.
, 2004, “
A Vector-Based Gyro-Free Inertial Navigation System by Integrating Existing Accelerometer Network in a Passenger Vehicle
,”
IEEE Position Location and Navigation Symposium
, Monterey, CA, pp.
234
242
.
29.
Pickel
,
W. C.
, 2005, “
Estimation of Postlaunch Angular Motion for Kinetic Energy Projectiles
,”
J. Guid. Control Dyn.
0731-5090,
28
(
4
), pp.
604
610
.
30.
Di Puccio
,
F.
, and
Forte
,
P.
, 2004, “
Identification of the 3D Vibratory Motion of a Rigid Body by Accelerometer Measurements
,”
Shock Vib.
1070-9622,
11
(
3–4
), pp.
281
293
.
31.
Mital
,
N. K.
, 1978, “
Computation of Rigid Body Rotation in Three-Dimensional Space from Body-Fixed Acceleration Measurements
,” Ph.D. thesis, Wayne State University, Detroit, MI.
32.
Mostov
,
K. S.
, 2000, “
Design of Accelerometer-Based Gyro-Free Navigation Systems
,” Ph.D. thesis, University of California, Berkeley, CA.
33.
Parsa
,
K.
, 2003, “
Dynamics, State Estimation, and Control of Manipulators With Rigid and Flexible Subsystems
,” Ph.D. thesis, McGill University, Montreal, Canada.
34.
Genin
,
J.
,
Hong
,
J.
, and
Xu
,
W.
, 1997, “
Accelerometer Placement for Angular Velocity Determination
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
474
477
.
35.
Zappa
,
B.
,
Legnani
,
G.
,
van den Bogert
,
A. J.
, and
Adamini
,
R.
, 2001, “
On the Number and Placement of Accelerometers for Angular Velocity and Acceleration Determination
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
(
3
), pp.
552
554
.
36.
Condurache
,
D.
, and
Matcovschi
,
M.
, 2002, “
Computation of Angular Velocity and Acceleration Tensors by Direct Measurements
,”
Acta Mech.
0001-5970,
153
, pp.
147
167
.
37.
Cappa
,
P.
,
Masia
,
L.
, and
Patanè
,
F.
, 2005, “
Numerical Validation of Linear Accelerometer Systems for the Measurement of Head Kinematics
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
919
928
.
38.
Angeles
,
J.
, 1999, “
The Angular-Acceleration Tensor of Rigid-Body Kinematics and its Properties
,”
Arch. Appl. Mech.
0939-1533,
69
(
3
), pp.
204
214
.
39.
Angeles
,
J.
, 2007,
Fundamentals of Robotic Mechanical Systems
,
3rd ed.
,
Springer
,
New York
.
40.
Ang
,
W. T.
,
Khoo
,
S. Y.
,
Khosla
,
P. K.
, and
Riviere
,
C. N.
, 2004, “
Physical Model of a MEMS Accelerometer for Low-g Motion Tracking Applications
,”
Proceedings of IEEE International Conference on Robotics and Automation
, New Orleans, LA, pp.
1345
1351
.
41.
Analog Devices
, 2004, ADXL320 Datasheet, www.analog.comwww.analog.com.
42.
Halmos
,
P. R.
, 1974, “
Finite-Dimensional Vector Spaces
,”
Undergraduate Texts in Mathematics
,
Springer-Verlag
,
Berlin, Germany
.
43.
Golub
,
G.
, and
Van Loan
,
C.
, 1996,
Matrix Computations
,
Johns Hopkins University Press
,
Baltimore, MD
.
44.
Chen
,
J. L.
,
Lee
,
S. C.
, and
DeBra
,
D. B.
, 1994, “
Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers
,”
J. Guid. Control Dyn.
0731-5090,
17
(
2
), pp.
286
290
.
45.
Ohlmeyer
,
E. J.
, and
Pepitone
,
T. R.
, 2002, “
Guidance, Navigation and Control Without Gyros: A Gun-Launched Munition Concept
,”
Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit
, Monterey, CA, pp.
2336
2349
.
46.
Strang
,
G.
, 1988,
Linear Algebra and its Applications
,
3rd ed.
,
Harcourt Brace Jovanovich
,
Orlando, FL
.
You do not currently have access to this content.