The output feedback stabilization problem for the class of nonlinear Lipschitz systems is considered. A discrete-time feedback controller is designed for the sampled-data case, where the output of the plant is only available at discrete points of time and where the objective is to stabilize the system continuously using a discrete-time controller. We show that exact stabilization in this case can be achieved using a direct sampled-data design approach, based on H optimization theory, in which neither the plant model nor the controller need to be discretized a priori. The proposed design is solvable using commercially available software and is shown to have important advantages over the classical emulation approach that has been used to solve similar problems. The applicability of the proposed techniques in the robotics field is thoroughly discussed from both the modeling and design perspectives.

1.
Bullo
,
F.
, and
Lewis
,
A. D.
, 2005,
Geometric Control of Mechanical Systems
,
Springer Science and Business Media Inc.
,
New York
.
2.
Isidori
,
A.
, 1995,
Nonlinear Control Systems
,
3rd ed.
,
Springer-Verlag
,
New York
.
3.
Marino
,
R.
, and
Tomei
,
P.
, 1995,
Nonlinear Control Design: Geometric, Adaptive and Robust
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
4.
Nijmeijer
,
H.
, and
van der Schaft
,
A.
, 1990,
Nonlinear Dynamical Control Systems
,
Springer-Verlag
,
Berlin
.
5.
Ge
,
S. S.
,
Li
,
G. Y.
, and
Lee
,
T. H.
, 2003, “
Adaptive NN Control for a Class of Strict-Feedback Discrete-Time Nonlinear Systems
,”
Automatica
0005-1098,
39
(
5
), pp.
807
819
.
6.
Kanellakopoulos
,
I.
,
Kokotović
,
P.
, and
Morse
,
A. S.
, 1991, “
Systematic Design of Adaptive Controllers for Feedback Linearizable Systems
,”
IEEE Trans. Autom. Control
0018-9286,
36
, pp.
1241
1253
.
7.
Krstić
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotović
,
P.
, 1995,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
8.
Aguilar
,
L. T.
,
Orlov
,
Y.
, and
Acho
,
L.
, 2003, “
Nonlinear H∞ Control of Nonsmooth Time-Varying Systems With Application to Friction Mechanical Manipulators
,”
Automatica
,
39
(
9
), pp.
1531
1542
. 0005-1098
9.
Ball
,
J. A.
,
Helton
,
J. W.
, and
Walker
,
M.
, 1993, “
H∞ Control for Nonlinear Systems Via Output Feedback
,”
IEEE Trans. Autom. Control
0018-9286,
38
, pp.
546
559
.
10.
Isidori
,
A.
, and
Astolfi
,
A.
, 1992, “
Disturbance Attenuation and H∞
Control Via Measurement Feedback in Nonlinear Systems,”
IEEE Trans. Autom. Control
0018-9286,
37
, pp.
1283
1293
.
11.
van der Schaft
,
A.
, 1991, “
On a State Space Approach to Nonlinear H∞
Control,”
Syst. Contr. Lett.
,
16
, pp.
1
8
. 0167-6911
12.
van der Schaft
,
A.
, 1999,
L2-Gain and Passivity Techniques in Nonlinear Control
,
Springer-Verlag
,
London
.
13.
Nesic
,
D.
,
Teel
,
A. R.
, and
Kokotovic
,
P. V.
, 1999, “
Sufficient Conditions for Stabilization of Sampled-Data Nonlinear Systems Via Discrete-Time Approximations
,”
Syst. Control Lett.
0167-6911,
38
, pp.
259
270
.
14.
Castillo
,
B.
,
Genmaro
,
Di. S.
,
Monaco
,
S.
, and
Normand-Cyrot
,
D.
, 1997, “
On Regulation Under Sampling
,”
IEEE Trans. Autom. Control
0018-9286,
42
, pp.
864
868
.
15.
Clarke
,
F. H.
,
Ledyaev
,
Y. S.
,
Sontag
,
E. D.
, and
Subbotin
,
A. I.
, 1997, “
Asymptotic Controllability Implies Feedback Stabilization
,”
IEEE Trans. Autom. Control
0018-9286,
42
, pp.
1394
1407
.
16.
Dabroom
,
A.
, and
Khalil
,
H. K.
, 2001, “
Output Feedback Sampled-Data Control of Nonlinear Systems Using High-Gain Observers
,”
IEEE Trans. Autom. Control
0018-9286,
46
(
11
), pp.
1712
1725
.
17.
Grune
,
L.
, 1998, “
Asymptotic Controllability and Exponential Stabilization of Nonlinear Control Systems at Singular Points
,”
SIAM J. Control Optim.
0363-0129,
36
, pp.
1485
1503
.
18.
Owens
,
D. H.
,
Zheng
,
Y.
, and
Billings
,
S. A.
, 1990, “
Fast Sampling and Stability of Nonlinear Sampled-Data Systems: Part 1. Existence Theorems
,”
IMA J. Math. Control Inf.
0265-0754,
7
, pp.
1
11
.
19.
Qu
,
Z.
, 1998,
Robust Control of Nonlinear Uncertain Systems
,
Wiley
,
New York
.
20.
Teel
,
A. R.
,
Nesic
,
D.
, and
Kokotovic
,
P. V.
, 1998, “
A Note on Input-to-State Stability of Sampled-Data Nonlinear Systems
,”
Proceedings of the IEEE CDC
, Tampa, FL, pp.
2473
2478
.
21.
Dochain
,
D.
, and
Bastin
,
G.
, 1984, “
Adaptive Information and Control Algorithms for Nonlinear Bacterial Growth Systems
,”
Automatica
,
20
, pp.
621
634
. 0005-1098
22.
Gyurkovics
,
E.
, and
Elaiw
,
A. M.
, 2004, “
Stabilization of Sampled-Data Nonlinear Systems by Receding Horizon Control Via Discrete-Time Approximations
,”
Automatica
,
40
(
12
), pp.
2017
2028
. 0005-1098
23.
Kazantzis
,
N.
, and
Kravaris
,
C.
, 1997, “
System Theoretic Properties of Sampled-Data Representations of Nonlinear Systems Obtained Via Taylor-Lie Series
,”
Int. J. Control
0020-7179,
67
, pp.
997
1020
.
24.
Lee
,
T. C.
, and
Jiang
,
Z. P.
, 2006, “
On Uniform Global Asymptotic Stability of Nonlinear Discrete-Time Systems With Applications
,”
IEEE Trans. Autom. Control
,
51
(
10
), pp.
1644
1660
. 0018-9286
25.
Mareels
,
I. M. Y.
,
Penfold
,
H. B.
, and
Evans
,
R. J.
, 1992, “
Controlling Nonlinear Time-Varying Systems Via Euler Approximations
,”
Automatica
,
28
, pp.
681
696
. 0005-1098
26.
Nesic
,
D.
, and
Teel
,
A. R.
, 2000, “
Set Stabilization of Sampled-Data Nonlinear Differential Inclusions Via Their Approximate Discrete-Time Models
,”
Proceedings of the 39th IEEE CDC
, Sydney, Australia, Dec., pp.
2112
2117
.
27.
Ortega
,
R.
, and
Taoutaou
,
D.
, 1996, “
A Globally Stable Discrete-Time Controller for Current-Fed Induction Motors
,”
Syst. Control Lett.
,
28
, pp.
123
128
. 0167-6911
28.
Svoronos
,
S. A.
,
Papageorgiou
,
D.
, and
Tsiligiannis
,
C.
, 1994, “
Discretization of Nonlinear Control Systems Via the Carleman Linearization
,”
Chem. Eng. Sci.
0009-2509,
49
, pp.
3263
3267
.
29.
Orlov
,
Y.
, and
Acho
,
L.
, 2001, “
Nonlinear H∞ Control of Time-Varying Systems: A Unified Distribution-Based Formalism for Continuous and Sampled-Data Measurement Feedback Design
,”
IEEE Trans. Autom. Control
0018-9286,
46
(
4
), pp.
638
643
.
30.
Aboky
,
C.
,
Sallet
,
G.
, and
Vivalda
,
J. C.
, 2002, “
Observers for Lipschitz Non-Linear Systems
,”
Int. J. Control
0020-7179,
75
, pp.
204
212
.
31.
Raghavan
,
S.
, and
Hedrick
,
J. K.
, 1994, “
Observer Design for a Class of Nonlinear Systems
,”
Int. J. Control
0020-7179,
59
(
2
), pp.
515
528
.
32.
Rajamani
,
R.
, 1998, “
Observers for Lipschitz Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
43
, pp.
397
401
.
33.
Zak
,
S. H.
, 1990, “
On the Stabilization and Observation of Nonlinear/Uncertain Dynamic Systems
,”
IEEE Trans. Autom. Control
0018-9286,
35
(
5
), pp.
604
607
.
34.
Pertew
,
A. M.
,
Marquez
,
H. J.
, and
Zhao
,
Q.
, 2006, “
H∞ Observer Design for Lipschitz Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
51
(
7
), pp.
1211
1216
.
35.
Pertew
,
A. M.
,
Marquez
,
H. J.
, and
Zhao
,
Q.
, 2007, “
LMI-Based Sensor Fault Diagnosis for Nonlinear Lipschitz Systems
,”
Automatica
,
43
(
8
), pp.
1464
1469
. 0005-1098
36.
Marquez
,
H. J.
, 2003,
Nonlinear Control Systems: Analysis and Design
,
Wiley
,
New York
.
37.
Vidyasagar
,
M.
, 1980, “
On the Stabilization of Nonlinear Systems Using State Detection
,”
IEEE Trans. Autom. Control
0018-9286,
25
(
3
), pp.
504
509
.
38.
Chen
,
T.
, and
Francis
,
B. A.
, 1995,
Optimal Sampled-Data Control Systems
,
Springer
,
London
.
39.
Hill
,
D. J.
, and
Moylan
,
P. J.
, 1977, “
Stability Results for Nonlinear Feedback Systems
,”
Automatica
0005-1098,
13
, pp.
377
382
.
40.
Zhou
,
K.
, and
Doyle
,
J. C.
, 1998,
Essentials of Robust Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
41.
Sciavicco
,
L.
, and
Sicliano
,
B.
, 1989,
Modeling and Control of Robot Manipulators
,
McGraw-Hill
,
New York
.
This content is only available via PDF.
You do not currently have access to this content.