Feedback control has been pursued to stabilize the bifurcated operating solution near the rotating stall point in axial-flow compressors. These controllers can extend the stable operating range and hence improve engine performance. However, the local L2 gain of these controllers still remains unknown. In this paper, a family of Lyapunov functions is first constructed, and then the local L2 gain is derived through Hamilton–Jacobi–Bellman inequality for a class of stabilizing controllers with throttle position as actuator and pressure rise as measurement. The results obtained in this paper provide useful guidance for selecting the most robust controller from a given class of stabilizing controllers in terms of L2 gain.

1.
McCaughan
,
F. E.
, 1990, “
Bifurcation Analysis of Axial Flow Compressor Stability
,”
SIAM J. Appl. Math.
0036-1399,
50
, pp.
1232
1253
.
2.
Chen
,
X.
,
Gu
,
G.
,
Martin
,
P.
, and
Zhou
,
K.
, 1998, “
Rotating Stall Control Via Bifurcation Stabilization
,”
Automatica
0005-1098,
34
(
4
), pp.
437
443
.
3.
Gravdahl
,
J. T.
, and
Egeland
,
O.
, 1999,
Compressor Surge and Rotating Stall: Modeling and Control
,
Springer
,
New York
.
4.
Gu
,
G.
,
Chen
,
X.
,
Sparks
,
A.
, and
Banda
,
S.
, 1999, “
Bifurcation Stabilization With Local Output Feedback
,”
SIAM J. Control Optim.
0363-0129,
37
(
3
), pp.
934
956
.
5.
Gu
,
G.
,
Banda
,
S.
, and
Sparks
,
A.
, 1999, “
An Overview of Rotating Stall and Surge Control for Axial Flow Compressors
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
, pp.
639
647
.
6.
Xiao
,
M.
, and
Basar
,
T.
, 2000, “
Analysis and Control of Multimode Axial Flow Compression System Models
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
, pp.
393
401
.
7.
Chen
,
X.
,
Sparks
,
A. G.
,
Zhou
,
K.
, and
Gu
,
G.
, 2001, “
Local Robustness of Stationary Bifurcation Control
,”
Lat. Am. Appl. Res.
0327-0793,
31
(
3
), pp.
163
170
.
8.
Chen
,
X.
,
Tahmasebi
,
A.
, and
Gu
,
G.
, 2003, “
Local Robustness of Bifurcation Stabilization With Application to Jet Engine Control
,”
Bifurcation Control: Theory and Applications
,
R.
Chen
,
D. J.
Hill
, and
X.
Yu
, eds.,
Spring-Verlag
,
Berlin
.
9.
Tahmasebi
,
A.
, and
Chen
,
X.
, 2003, “
Robustness of Rotating Stall Control for Axial-Flow Compressor
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
424
428
.
10.
Iooss
,
G.
, and
Joseph
,
D. D.
, 1980,
Elementary Stability and Bifurcation Theory
,
Springer-Verlag
,
New York
.
11.
Khalil
,
H. K.
, 2002,
Nonlinear Systems
, 3rd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
12.
van der Schaft
,
A. J.
, 1996,
L2-Gain and Passivity Techniques in Nonlinear Control
,
Springer-Verlag
,
London
.
13.
Fu
,
J. -H.
, and
Abed
,
E. H.
, 1993, “
Families of Lyapunov Functions for Nonlinear Systems in Critical Cases
,”
IEEE Trans. Autom. Control
,
38
(
1
), pp.
3
16
. 0018-9286
14.
Abed
,
E. H.
, and
Fu
,
J. -H.
, 1987, “
Local Feedback Stabilization and Bifurcation Control, II. Stationary Bifurcation
,”
Syst. Control Lett.
0167-6911,
8
(
5
), pp.
467
473
.
15.
Moore
,
F. K.
, and
Greitzer
,
E. M.
, 1986, “
A Theory of Post-Stall Transients in Axial Compression Systems, Parts I and II
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
68
97
. 0742-4795
16.
Mhaskar
,
P.
, 2006, “
Robust Model Predictive Control Design for Fault-Tolerant Control of Process Systems
,”
Ind. Eng. Chem. Res.
,
45
, pp.
8565
8574
. 0888-5885
You do not currently have access to this content.