Feedback control has been pursued to stabilize the bifurcated operating solution near the rotating stall point in axial-flow compressors. These controllers can extend the stable operating range and hence improve engine performance. However, the local gain of these controllers still remains unknown. In this paper, a family of Lyapunov functions is first constructed, and then the local gain is derived through Hamilton–Jacobi–Bellman inequality for a class of stabilizing controllers with throttle position as actuator and pressure rise as measurement. The results obtained in this paper provide useful guidance for selecting the most robust controller from a given class of stabilizing controllers in terms of gain.
Issue Section:
Technical Briefs
1.
McCaughan
, F. E.
, 1990, “Bifurcation Analysis of Axial Flow Compressor Stability
,” SIAM J. Appl. Math.
0036-1399, 50
, pp. 1232
–1253
.2.
Chen
, X.
, Gu
, G.
, Martin
, P.
, and Zhou
, K.
, 1998, “Rotating Stall Control Via Bifurcation Stabilization
,” Automatica
0005-1098, 34
(4
), pp. 437
–443
.3.
Gravdahl
, J. T.
, and Egeland
, O.
, 1999, Compressor Surge and Rotating Stall: Modeling and Control
, Springer
, New York
.4.
Gu
, G.
, Chen
, X.
, Sparks
, A.
, and Banda
, S.
, 1999, “Bifurcation Stabilization With Local Output Feedback
,” SIAM J. Control Optim.
0363-0129, 37
(3
), pp. 934
–956
.5.
Gu
, G.
, Banda
, S.
, and Sparks
, A.
, 1999, “An Overview of Rotating Stall and Surge Control for Axial Flow Compressors
,” IEEE Trans. Control Syst. Technol.
1063-6536, 7
, pp. 639
–647
.6.
Xiao
, M.
, and Basar
, T.
, 2000, “Analysis and Control of Multimode Axial Flow Compression System Models
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 122
, pp. 393
–401
.7.
Chen
, X.
, Sparks
, A. G.
, Zhou
, K.
, and Gu
, G.
, 2001, “Local Robustness of Stationary Bifurcation Control
,” Lat. Am. Appl. Res.
0327-0793, 31
(3
), pp. 163
–170
.8.
Chen
, X.
, Tahmasebi
, A.
, and Gu
, G.
, 2003, “Local Robustness of Bifurcation Stabilization With Application to Jet Engine Control
,” Bifurcation Control: Theory and Applications
, R.
Chen
, D. J.
Hill
, and X.
Yu
, eds., Spring-Verlag
, Berlin
.9.
Tahmasebi
, A.
, and Chen
, X.
, 2003, “Robustness of Rotating Stall Control for Axial-Flow Compressor
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 125
, pp. 424
–428
.10.
Iooss
, G.
, and Joseph
, D. D.
, 1980, Elementary Stability and Bifurcation Theory
, Springer-Verlag
, New York
.11.
Khalil
, H. K.
, 2002, Nonlinear Systems
, 3rd ed., Prentice-Hall
, Englewood Cliffs, NJ
.12.
van der Schaft
, A. J.
, 1996, L2-Gain and Passivity Techniques in Nonlinear Control
, Springer-Verlag
, London
.13.
Fu
, J. -H.
, and Abed
, E. H.
, 1993, “Families of Lyapunov Functions for Nonlinear Systems in Critical Cases
,” IEEE Trans. Autom. Control
, 38
(1
), pp. 3
–16
. 0018-928614.
Abed
, E. H.
, and Fu
, J. -H.
, 1987, “Local Feedback Stabilization and Bifurcation Control, II. Stationary Bifurcation
,” Syst. Control Lett.
0167-6911, 8
(5
), pp. 467
–473
.15.
Moore
, F. K.
, and Greitzer
, E. M.
, 1986, “A Theory of Post-Stall Transients in Axial Compression Systems, Parts I and II
,” ASME J. Eng. Gas Turbines Power
, 108
, pp. 68
–97
. 0742-479516.
Mhaskar
, P.
, 2006, “Robust Model Predictive Control Design for Fault-Tolerant Control of Process Systems
,” Ind. Eng. Chem. Res.
, 45
, pp. 8565
–8574
. 0888-5885Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.