In this paper, nonlinear stabilizers are introduced for voltage-controlled microelectromechanical system (MEMS) relays. The control constructions follow a Lyapunov approach and are based on a nonlinear dynamic model applicable to the two types of MEMS relays—electrostatic and electromagnetic. Two control schemes are presented with the objectives of avoiding pull-in during the microrelay closing and improving the transient response during the microrelay opening. First, an adaptive state feedback stabilizer is proposed to compensate for parametric uncertainty in all mechanical parameters and selected electrical parameters while ensuring asymptotic regulation of the electrode opening and closing. Next, a model-based observer/stabilizer is proposed to account for the lack of velocity measurements. Simulations demonstrate the performance of the two control schemes in comparison to the typical open-loop operation of the MEMS relay.

1.
Williams
,
J. D.
, 2004, “
Design and Fabrication of Electromagnetic Micro-Relays Using the UV-LIGA Technique
” Ph.D. thesis, Louisiana State University, Baton Rouge, LA.
2.
Busch-Vishniac
,
I. J.
, 1992, “
The Case for Magnetically Driven Microactuators
,”
Sens. Actuators, A
0924-4247,
33
, pp.
207
220
.
3.
Guckel
,
H.
,
Earles
,
T.
,
Klein
,
J.
,
Zook
,
J. D.
, and
Ohnstein
,
T.
, 1996, “
Electromagnetic Linear Actuators With Inductive Position Sensing
,”
Sens. Actuators, A
0924-4247,
53
, pp.
386
391
.
4.
Hosaka
,
H.
,
Kuwano
,
H.
, and
Yanagisawa
,
K.
, 1994, “
Electromagnetic Microrelays: Concepts and Fundamental Characteristics
,”
Sens. Actuators, A
0924-4247,
40
, pp.
41
47
.
5.
Jeong
,
S. J.
, 2005, “
UV-LIGA Micro-Fabrication of Inertia Type Electrostatic Transducers and Their Application
,” Ph.D. thesis, Louisiana State University, Baton Rouge, LA.
6.
Nadal-Guardia
,
R.
,
Dehé
,
A.
,
Aigner
,
R.
, and
Castañer
,
L. M.
, 2002, “
Current Drive Methods to Extend the Range of Travel of Electrostatic Microactuators Beyond the Voltage Pull-In Point
,”
J. Microelectromech. Syst.
1057-7157,
11
(
3
), pp.
255
263
.
7.
Nonaka
,
K.
, and
Baillieul
,
J.
, 2001, “
Open Loop Robust Vibrational Stabilization of a Two Wire System Inside the Snap-Through Instability Region
,”
Proceedings of the IEEE Conference on Decision and Control
, Orlando, FL, pp.
1334
1341
.
8.
Peterson
,
K.
,
Grizzle
,
J. W.
, and
Stefanopoulou
,
A. G.
, 2006, “
Nonlinear Control for Magnetic Levitation of Automotive Engine Valves
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
14
(
2
), pp.
346
354
.
9.
Senturia
,
S. D.
, 2004,
Microsystem Design
,
Springer
,
New York
.
10.
Tai
,
C.
, and
Tsao
,
T.
, 2002, “
Control of an Electromechanical Camless Valve Actuator
,”
Proceedings of the American Control Conference
, Anchorage, AK, pp.
262
267
.
11.
Maithripala
,
D. H. S.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
, 2003, “
Capacitive Stabilization of an Electrostatic Actuator: An Output Feedback Viewpoint
,”
Proceedings of the American Control Conference
, Denver, CO, pp.
4053
4058
.
12.
Nielson
,
G. N.
, and
Barbastathis
,
G.
, 2006, “
Dynamic Pull-In of Parallel-Plate and Torsional Electrostatic MEMS Actuators
,”
J. Microelectromech. Syst.
,
15
(
4
), pp.
811
821
. 1057-7157
13.
McCarthy
,
B.
,
Adams
,
G. G.
,
McGruer
,
N. E.
, and
Potter
,
D.
, 2002, “
A Dynamic Model, Including Contact Bounce, of an Electrostatically Actuated Microswitch
,”
J. Microelectromech. Syst.
1057-7157,
11
(
3
), pp.
276
283
.
14.
Maithripala
,
D. H. S.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
, 2005, “
Control of an Electrostatic Microelectromechanical System Using Static and Dynamic Output Feedback
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
3
), pp.
443
450
.
15.
Maithripala
,
D. H. S.
,
Kawade
,
B. D.
,
Berg
,
J. M.
, and
Dayawansa
,
W. P.
, 2005, “
A General Modelling and Control Framework for Electrostatically Actuated Mechanical Systems
,”
Int. J. Robust Nonlinear Control
1049-8923,
15
, pp.
839
857
.
16.
Zhu
,
G.
,
Lévine
,
J.
, and
Praly
,
L.
, 2005, “
Improving the Peformance of an Electrostatically Actuated MEMS by Nonlinear Control: Advances and Comparison
,”
Proceedings of the Conference on Decision and Control
, Seville, Spain, pp.
7534
7539
.
17.
Zhu
,
G.
,
Penet
,
J.
, and
Saydy
,
L.
, 2006, “
Robust Control of an Electrostatically Actuated MEMS in the Presence of Parasitics and Parameter Uncertainties
,”
Proceedings of the American Control Conference
, Minneapolis, MN, pp.
1233
1238
.
18.
Zhu
,
G.
, and
Saydy
,
L.
, 2007, “
Robust Output Feedback Control of an Electrostatic Micro-Actuator
,”
Proceedings of the American Control Conference
, New York, pp.
3192
3197
.
19.
Borovic
,
B.
,
Hong
,
C.
,
Liu
,
A. Q.
,
Xie
,
L.
, and
Lewis
,
F. L.
, 2004, “
Control of a MEMS Optical Switch
,”
Proceedings of the Conference on Decision and Control
, Paradise Island, Bahamas, pp.
3039
3044
.
20.
Tee
,
K. P.
,
Ge
,
S. S.
, and
Tay
,
E. H.
, 2007, “
Adaptive Control of a Class of Uncertain Electrostatic Microactuators
,”
Proceedings of the American Control Conference
, New York, pp.
3186
3191
.
21.
Piyabongkarn
,
D.
,
Sun
,
Y.
,
Rajamani
,
R.
,
Sezen
,
A.
, and
Nelson
,
B. J.
, 2005, “
Travel Range Extension of a MEMs Electrostatic Microactuator
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
1
), pp.
138
145
.
22.
Anderson
,
R. C.
,
Kawade
,
B.
,
Ragulan
,
K.
,
Maithripala
,
D. H. S.
,
Berg
,
J. M.
,
Gale
,
R. O.
, and
Dayawansa
,
W. P.
, 2005, “
Integrated Charge and Position Sensing for Feedback Control of Electrostatic MEMS
,”
Proceedings of the SPIE Conference Smart Structures and Materials
, San Diego, CA.
23.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P.
, 1995,
Nonlinear and Adaptive Control Design
,
Wiley
,
New York
.
24.
Younis
,
M.
,
Gao
,
F.
, and
de Queiroz
,
M. S.
, 2007, “
A Generalized Approach for the Control of MEM Relays
,”
Proceedings of the American Control Conference
, New York, pp.
3180
3185
.
You do not currently have access to this content.