In this paper, we consider a boundary control problem governed by the two-dimensional Burgers’ equation for a configuration describing convective flow over an obstacle. Flows over obstacles are important as they arise in many practical applications. Burgers’ equations are also significant as they represent a simpler form of the more general Navier–Stokes momentum equation describing fluid flow. The aim of the work is to develop a reduced-order boundary control-oriented model for the system with subsequent nonlinear control law design. The control objective is to drive the full order system to a desired 2D profile. Reduced-order modeling involves the application of an L2 optimization based actuation mode expansion technique for input separation, demonstrating how one can obtain a reduced-order Galerkin model in which the control inputs appear as explicit terms. Controller design is based on averaging and center manifold techniques and is validated with full order numerical simulation. Closed-loop results are compared to a standard linear quadratic regulator design based on a linearization of the reduced-order model. The averaging∕center manifold based controller design provides smoother response with less control effort and smaller tracking error.

1.
Smaoui
,
N.
, 2005, “
Boundary and Distributed Control of the Viscous Burgers Equation
,”
J. Comput. Appl. Math.
0377-0427,
182
(
1
), pp.
91
104
.
2.
Hinze
,
M.
, and
Kunisch
,
K.
, 2004, “
Second Order Methods for Boundary Control of the Instationary Navier–Stokes System
,”
ZAMM
0044-2267,
84
(
3
), pp.
171
87
.
3.
Kobayashi
,
T.
, and
Oya
,
M.
, 2003, “
Nonlinear Boundary Control of Coupled Burgers’ Equations
,”
Contr. Cybernet.
0324-8569,
32
(
2
), pp.
245
58
.
4.
Park
,
H. M.
, and
Lee
,
M. W.
, 2000, “
Boundary Control of the Navier–Stokes Equation by Empirical Reduction of Modes
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
(
1–3
), pp.
165
86
.
5.
Krstic
,
M.
, 1999, “
On Global Stabilization of Burgers’ Equation by Boundary Control
,”
Syst. Control Lett.
0167-6911,
37
(
3
), pp.
123
41
.
6.
Aamo
,
O. M.
,
Krstic
,
M.
, and
Bewley
,
T. R.
, 2003, “
Control of Mixing by Boundary Feedback in 2D Channel Flow
,”
Automatica
0005-1098,
39
(
10
), pp.
1597
1606
.
7.
Anderson
,
J. D.
, 1995,
Computational Fluid Dynamics: The Basics With Applications
,
McGraw Hill
,
New York
.
8.
Kook
,
H.
,
Mongeau
,
L.
, and
Franchek
,
M. A.
, 2002, “
Active Control of Pressure Fluctuations Due to Flow Over Helmholtz Resonators
,”
J. Sound Vib.
0022-460X,
255
(
1
), pp.
61
76
.
9.
Rowley
,
C. W.
,
Colonius
,
T.
, and
Murray
,
R. M.
, 2004, “
Model Reduction for Compressible Flows Using POD and Galerkin Projection
,”
Physica D
0167-2789,
189
(
1–2
), pp.
115
29
.
10.
Noack
,
B. R.
,
Afanasiev
,
K.
,
Morzynski
,
M.
,
Tadmor
,
G.
, and
Thiele
,
F.
, 2003, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
497
, pp.
335
63
.
11.
Rempfer
,
D.
, 2000, “
On Low-Dimensional Galerkin Models for Fluid Flow
,”
Theor. Comput. Fluid Dyn.
0935-4964,
14
(
2
), pp.
75
88
.
12.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical System, and Symmetry
,
Cambridge University Press
,
Cambridge
.
13.
Noack
,
B. R.
, and
Eckelmann
,
H.
, 1994, “
A Global Stability Analysis of the Steady and Periodic Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
270
, pp.
297
330
.
14.
Noack
,
B. R.
,
Papas
,
P.
, and
Monketwitz
,
P. A.
, 2005, “
The Need for a Pressure-Term Representation in Empirical Galerkin Models of Incompressible Shear Flows
,”
J. Fluid Mech.
0022-1120,
523
, pp.
339
65
.
15.
Rowley
,
C. W.
, and
Marsden
,
J. E.
, 2000, “
Reconstruction Equations and the Karhunen–Loeve Expansion for Systems With Symmetry
,”
Physica D
0167-2789,
142
(
1–2
), pp.
1
19
.
16.
Fitzpatrick
,
K.
,
Feng
,
Y.
,
Lind
,
R.
,
Kurdila
,
A. J.
, and
Mikolaitis
,
D. W.
, 2005, “
Flow Control in a Driven Cavity Incorporating Excitation Phase Differential
,”
J. Guid. Control Dyn.
0731-5090,
28
(
1
), pp.
63
70
.
17.
Samimy
,
M.
,
Debiasi
,
M.
,
Caraballo
,
E.
,
Serrani
,
A.
,
Yuan
,
X.
,
Little
,
J.
, and
Myatt
,
J. H.
, 2007, “
Feedback Control of Subsonic Cavity Flows Using Reduced-Order Models
,”
J. Fluid Mech.
0022-1120,
579
, pp.
315
346
.
18.
Singh
,
S. N.
,
Myatt
,
J. H.
,
Addington
,
G. A.
,
Banda
,
S.
, and
Hall
,
J. K.
, 2001, “
Optimal Feedback Control of Vortex Shedding Using Proper Orthogonal Decomposition Models
,”
ASME Trans. J. Fluids Eng.
0098-2202,
123
(
3
), pp.
612
618
.
19.
Hogberg
,
M.
,
Bewley
,
T. R.
, and
Henningson
,
D. S.
, 2001, “
Linear Feedback Control and Estimation of Transition in Plane Channel Flow
,
J. Fluid Mech.
0022-1120,
481
, pp.
149
175
.
20.
Camphouse
,
R. C.
, 2005, “
Boundary Feedback Control Using Proper Orthogonal Decomposition Models
,”
J. Guid. Control Dyn.
0731-5090,
28
, pp.
931
938
.
21.
Camphouse
,
R.
,
Myatt
,
J.
,
Schmit
,
R.
,
Glauser
,
M.
,
Ausseur
,
J.
,
Andino
,
M.
, and
Wallace
,
R.
, 2008, “
A Snapshot Decomposition Method for Reduced Order Modeling and Boundary Feedback Control
,” AIAA Paper No. 2008-4195.
22.
Efe
,
M. O.
, and
Ozbay
,
H.
, 2004, “
Low Dimensional Modelling and Dirichlet Boundary Controller Design for Burgers Equation
,”
Int. J. Control
0020-7179,
77
(
10
), pp.
895
906
.
23.
Kasnakoglu
,
C.
,
Serrani
,
A.
, and
Efe
,
M. O.
, 2008, “
Control Input Separation by Actuation Mode Expansion for Flow Control Problems
,”
Int. J. Control
0020-7179,
81
(
9
), pp.
1475
1492
.
24.
Hunt
,
J. C. R.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
, 1978, “
Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization
,”
Journal of Fluid Mechanics Digital Archive
,
86
, pp.
179
200
.
25.
Orellano
,
A.
, and
Wengle
,
H.
, 2000, “
Numerical Simulation (DNS and LES) of Manipulated Turbulent Boundary Layer Flow Over a Surface-Mounted Fence
,”
Eur. J. Mech. B/Fluids
0997-7546,
19
, pp.
765
788
.
26.
Kasnakoglu
,
C.
, and
Serrani
,
A.
, 2007, “
Oscillation Supression in Galerkin Systems Using Center-Manifold and Averaging Techniques
,”
Eur. J. Control
0947-3580,
5
(
13
), pp.
529
542
.
27.
Kasnakoglu
,
C.
, and
Serrani
,
A.
, 2007, “
Analysis and Nonlinear Control of Galerkin Models Using Averaging and Center Manifold Theory
,”
American Control Conference
,
New York
, pp.
3035
3040
.
28.
Camphouse
,
R. C.
, and
Myatt
,
J. H.
, 2004, “
Feedback Control for a Two-Dimensional Burgers Equation System Model
,”
Second AIAA Flow Control Conference
,
Portland, OR
.
29.
Batchelor
,
G. K.
, 2000,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, United Kingdom
.
30.
Aamo
,
O. M.
, and
Krstic
,
M.
, 2004, “
Feedback Control of Particle Dispersion in Bluff Body Wakes
,”
Int. J. Control
0020-7179,
77
(
11
), pp.
1001
1018
.
31.
Noack
,
B. R.
,
Tadmor
,
G.
, and
Morzynski
,
M.
, 2004, “
Low-Dimensional Models for Feedback Flow Control. Part I: Empirical Galerkin Models
,”
Proceedings of the Second AIAA Flow Control Conference
,
Portland, OR
, AIAA Paper No. 2004-2408.
32.
Tadmor
,
G.
,
Noack
,
B. R.
,
Morzynski
,
M.
, and
Siegel
,
S.
, 2004, “
Low-Dimensional Models for Feedback Flow Control. Part II: Controller Design And Dynamic Estimation
,”
Proceedings of the Second AIAA Flow Control Conference
,
Portland, OR
, AIAA Paper No. 2004-2409.
33.
Marsden
,
J. E.
, and
McCracken
,
M.
, 1976,
The Hopf Bifurcation and Its Applications
,
Springer-Verlag
,
New York, NY
.
34.
Chow
,
S. N.
, and
Mallet-Paret
,
J.
, 1977, “
Integral Averaging and Bifurcation
,”
J. Differ. Equations
0022-0396,
26
(
1
), pp.
112
159
.
35.
Wiggins
,
S.
, 2003,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer-Verlag
,
New York
, NY,
2nd edition
.
36.
Vidyasagar
,
M.
, 2002,
Nonlinear Systems Analysis
,
2nd ed.
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
37.
Burns
,
J.
, and
Kang
,
S.
, 1991, “
A Control Problem for Burgers Equation With Bounded Input∕Output
,”
Nonlinear Dyn.
0924-090X,
2
, pp.
235
262
.
You do not currently have access to this content.