Abstract

In this study we first develop a flight mechanics model for supercavitating vehicles, which is formulated to account for the dependence of the cavity shape from the past history of the system. This mathematical model is governed by a particular class of delay differential equations, featuring time delays on the states of the system. Next, flight trajectories and maneuvering strategies for supercavitating vehicles are obtained by solving an optimal control problem, whose solution, given a cost function and general constraints and bounds on states and controls, yields the control time histories that maneuver the vehicle according to a desired strategy, together with the associated flight path. The optimal control problem is solved using a novel direct multiple shooting approach, which is formulated to properly handle conditions dictated by the delay differential equation formulation governing the dynamic behavior of the vehicle. Specifically, the new formulation enforces the state continuity line conditions in a least-squares sense using local interpolations, which supports local time stepping and drastically reduces the number of optimization unknowns. Examples of maneuvers and resulting trajectories demonstrate the effectiveness of the proposed methodology and the generality of the formulation. The results are also compared with those obtained from a previously developed model governed by ordinary differential equations to highlight the differences and demonstrate the need for the current formulation.

1.
Miller
,
D.
, 1995, “
Going to War in a Bubble
,”
Jane's International Defense Review
, April, pp.
61
65
.
2.
Ng
,
K. W.
, 2006, “
Overview of the ONR Supercavitating High-Speed Bodies Program
,”
Collection of Technical Papers—AIAA Guidance, Navigation, and Control Conference 2006
, Keystone, CO, Vol.
5
, pp.
3088
3091
.
3.
D.
Hammick
, 2006, “
Darpa Study Looks Into High-Speed Underwater Capability
,”
Jane’s Navy International
, November.
4.
Hargrove
,
J.
, 2004, “
Supercavitation and Aerospace Technology in the Development of High-Speed Underwater Vehicles
,” Reno, NV, pp.
3547
3555
.
5.
Feng
,
G.
, and
Yan
,
K.
, 2005, “
Numerical Calculation of Underwater Trajectory of Supercavitating Bodies
,”
Chuan Bo Li Xue/Journal of Ship Mechanics
,
9
(
2
), pp.
1
8
.
6.
Feng
,
X.-M.
,
Lu
,
C.-J.
,
Hu
,
T.-Q.
,
Wu
,
L.
, and
Li
,
J.
, 2005, “
Fluctuation Characteristics of Natural and Ventilated Cavities on an Axisymmetric Body
,”
J. Hydrodynam.
1001-6058,
17
(
1
), pp.
87
91
.
7.
Paryshev
,
E. V.
, 2006, “
Approximate Mathematical Models in High-Speed Hydrodynamics
,”
J. Eng. Math.
0022-0833,
55
(
1-4
), pp.
41
64
.
8.
Serebryakov
,
V. V.
, 2002, “
Supercavitation for High Speed Motion in Water—Prediction and Drag Reduction Problems
,”
FED (Am. Soc. Mech. Eng.)
0888-8116,
257
, pp.
411
417
.
9.
Wu
,
X.
, and
Chahine
,
G. L.
, 2007, “
Characterization of the Content of the Cavity Behind a High-Speed Supercavitating Body
,”
ASME Trans. J. Fluids Eng.
0098-2202,
129
(
2
), pp.
136
145
.
10.
Zhang
,
X.-W.
,
Wei
,
Y.-J.
,
Zhang
,
J.-Z.
,
Wang
,
C.
, and
Yu
,
K.-P.
, 2007, “
Experimental Research on the Shape Characters of Natural and Ventilated Supercavitation
,”
J. Hydrodynam.
1001-6058,
19
, pp.
564
571
.
11.
Kirschner
,
I. N.
,
Fine
,
N. E.
,
James
,
J.
,
Uhlman
,
S.
, and
Kring
,
D. C.
, 2001,
RTO AVT Lecture Series on Supercavitating Flows
,
Von Karman Institute
,
Brussels, Belgium
.
12.
Varghese
,
A. N.
,
Uhlman
,
J. S.
, and
Kirschner
,
I. N.
, 2005, “
Numerical Analysis of High-Speed Bodies in Partially Cavitating Axisymmetric Flow
,”
ASME Trans. J. Fluids Eng.
0098-2202,
127
(
1
), pp.
41
54
.
13.
Kirschner
,
I. N.
,
Kring
,
D. C.
,
Stokes
,
A. W.
,
Fine
,
N. E.
, and
Uhlman
,
J. S.
, 2002, “
Control Strategies for Supercavitating Vehicles
,”
J. Vib. Control
1077-5463,
8
, pp.
219
242
.
14.
Dzielski
,
J.
, and
Kurdila
,
A.
, 2003, “
A Benchmark Control problem for Supercavitating Vehicles and an Initial Investigation of Solutions
,”
J. Vib. Control
1077-5463,
9
, pp.
791
804
.
15.
Ruzzene
,
M.
, and
Soranna
,
F.
, 2004, “
Impact Dynamics of Stiffened Elastic Supercavitating Underwater Vehicles
,”
J. Vib. Control
1077-5463,
10
(
2
), pp.
243
267
.
16.
Lin
,
G.
,
Balachandran
,
B.
, and
Abed
,
E. H.
, 2007, “
Nonlinear Dynamics and Bifurcations of a Supercavitating Vehicle
,”
IEEE J. Ocean. Eng.
0364-9059,
32
, pp.
753
761
.
17.
Lin
,
G.
,
Balachandran
,
B.
, and
Abed
,
E. H.
, 2006, “
Nonlinear Dynamics and Control of Supercavitating Bodies
,”
Collection of Technical Papers—AIAA Guidance, Navigation, and Control Conference 2006
, Keystone, CO, Vol.
5
, pp.
3151
3164
.
18.
Richards
,
N. D.
,
Monaco
,
J. F.
, and
Knospe
,
C. R.
, 2006, “
Application of Robust State and Parameter Estimation to a Supercavitating Torpedo Model
,”
Collection of Technical Papers—AIAA Guidance, Navigation, and Control Conference 2006
, Keystone, CO, Vol.
5
, pp.
3134
3150
.
19.
Vanek
,
B.
,
Bokor
,
J.
, and
Balas
,
G.
, 2006, “
High-Speed Supercavitation Vehicle Control
,”
Collection of Technical Papers—AIAA Guidance, Navigation, and Control Conference 2006
, Keystone, CO, Vol.
5
, pp.
3165
3172
.
20.
Vanek
,
B.
,
Bokor
,
J.
, and
Balas
,
G.
, 2006, “
Theoretical Aspects of High-Speed Supercavitation Vehicle Control
,”
Proceedings of the American Control Conference
, Minneapolis, MN, Vol.
2006
, pp.
5263
5268
.
21.
Vanek
,
B.
,
Bokor
,
J.
,
Balas
,
G. J.
, and
Arndt
,
R. E.
, 2007, “
Longitudinal Motion Control of a High-Speed Supercavitation Vehicle
,”
J. Vib. Control
1077-5463,
13
(
2
), pp.
159
184
.
22.
Ruzzene
,
M.
,
Kamada
,
R.
,
Bottasso
,
C. L.
, and
Scorcelletti
,
F.
, 2008, “
Trajectory Optimization Strategies for Supercavitating Underwater Vehicles
,”
J. Vib. Control
1077-5463,
14
(
5
), pp.
611
644
.
23.
Logvinovich
,
G. V.
, 1980, “
Some Problems in Planing Surfaces [sic]
,”
Central Aero and Hydrodynamics Institute
, Moscow, Russia, Trudy TsAGI 2052.
24.
Logvinovich
,
G. V.
, 1972, “
Hydrodynamics of Free-Boundary Flow
,” U.S. Department of Commerce, Washington, DC, Technical Report.
25.
Logvinovich
,
G. V.
,
Buivol
,
V. N.
,
Dudko
,
A. S.
,
Putilin
,
S. I.
, and
Shevchuk
,
Y. R.
, 1985, “
Flows With Free Surfaces
,” Naukova Dumka, Kiev, Ukraine, Technical Report.
26.
Ahn
,
S. S.
,
Ruzzene
,
M.
,
Bottasso
,
C.
, and
Scorcelletti
,
F.
, 2007, “
Configuration Optimization of Supercavitating Underwater Vehicles With Maneuvering Constraints
,”
IEEE J. Ocean. Eng.
0364-9059, under review.
27.
Borri
,
M.
,
Trainelli
,
L.
, and
Bottasso
,
C.
, 2000, “
On Representations and Parameterizations of Motion
,”
Multibody Syst. Dyn.
1384-5640,
4
, pp.
129
193
.
28.
Kiceniuk
,
T.
, 1954, “
An Experimental Study of the Hydrodynamic Forces on a Family of Cavity Producing Conical Bodies of Revolution Inclined to the Flow
,” California Institute of Technology, Pasadena, CA, CIT Hydrodynamic Report No. E-12.17.
29.
May
,
A.
, 1975, “
Water Entry and the Cavity-Running Behavior of Missiles
,” Naval Surface Weapons Center, White Oak Laboratory, Silver Spring, MD, SEAHAC Technical Report No. 75-2.
30.
Fine
,
N. E.
, and
Kinnas
,
S. A.
, 1993, “
A Boundary Element Method for the Analysis of the Flow Around 3-d Cavitating Hydrofoil
,”
J. Ship Res.
0022-4502,
37
(
1
), pp.
213
224
.
31.
Hassan
,
S. E.
, 2004, “
Analysis of Hydrodynamic Planing Forces Associated With Cavity Riding Vehicles
,” personal communication.
32.
White
,
F. M.
, 1994,
Fluid Mechanics
, 3rd ed.,
McGraw-Hill
,
New York
.
33.
Bryson
,
A. E.
,
, and
Ho
,
Y.-C.
, 1975,
Applied Optimal Control
,
Hemisphere
,
New York
.
34.
Betts
,
J. T.
, 2001,
Practical Methods for Optimal Control Using Non-Linear Programming
, SIAM, Philadelphia, PA.
35.
Scorcelletti
,
F.
,
Bottasso
,
C. L.
, and
Ruzzene
,
M.
, 2007, “
Multiple Shooting Solution of Optimal Control Problems for Time-Delayed Dynamic Systems
,” in preparation.
36.
Barclay
,
A.
,
Gill
,
P. E.
, and
Rosen
,
J. B.
, 1997, “
Sqp Methods and Their Application to Numerical Optimal Control
,” Department of Mathematics, University of California, San Diego, Report No. NA 97-3.
37.
Renegar
,
J.
, 2001,
A Mathematical View of Interior Point Methods in Convex Optimization
,
SIAM
, Philadelphia, PA.
You do not currently have access to this content.