This paper presents a bidirectional wireless swimming microrobot that has been developed, analyzed, and experimentally tested. The robot is developed based on fin beating propulsion, using giant magnetostrictive films for head and tail fins. An innovative drive approach, using separate second order resonance frequencies of the head and tail fins to generate forward and backward thrusts, is proposed and implemented on a bidirectional swimming microrobot prototype. Dynamic model of the proposed microrobot has been derived based on theoretical analysis. Simulation and experimental results have demonstrated the feasibility of the proposed drive approach and design. The developed swimming microrobot features a low driving frequency, low power consumption, and a large range of swimming speed in both the forward and backward directions.

1.
Hayashi
,
I.
, and
Iwatsuk
,
N.
, 1998, “
Micro Moving Robotics
,”
Proceedings of the International Symposium on Micromechatronics and Human Science
, Nagoya, Japan, pp.
41
50
.
2.
Breder
,
C. M.
, 1926, “
The Locomotion of Fishes
,”
Zoologica (N.Y.)
0044-507X,
4
, pp.
159
256
.
3.
Webb
,
P. W.
, and
Weihs
,
D.
, 1983,
Fish Biomechanic
,
Praeger
,
New York
.
4.
Sfakiotakis
,
M.
,
Lane
,
D.
,
Bruce
,
J.
, and
Davies
,
C.
, 1999, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Ocean. Eng.
0364-9059,
24
(
2
), pp.
237
252
.
5.
Colgate
,
J.
, and
Lynch
,
K.
, 2004, “
Mechanics and Control of Swimming: A Review
,”
IEEE J. Ocean. Eng.
0364-9059,
29
(
3
), pp.
660
673
.
6.
Guo
,
S.
,
Fukuda
,
T.
, and
Asaka
,
K.
, 2003, “
A New Type of Fish-Like Underwater Micro Robot
,”
IEEE/ASME Trans. Mechatron.
,
8
(
1
), pp.
136
141
. 1083-4435
7.
Kósa
,
G.
,
Shoham
,
M.
, and
Zaaroor
,
M.
, 2005, “
Propulsion of a Swimming Micro Medical Robot
,”
Proceedings of IEEE International Conference Robotics and Automation
, Barcelona, Spain, pp.
1327
1331
.
8.
Guo
,
S.
,
Sawamoto
,
J.
, and
Pan
,
Q.
, 2005, “
A Novel Type of Microrobot for Biomedical Application
,”
Proceedings of IEEE International Conference Intelligent Robots and Systems
, Edmonton, AB, Canada, pp.
1047
1052
.
9.
Mei
,
T.
,
Chen
,
Y.
,
Fu
,
G.
, and
Kong
,
D.
, 2002, “
Wireless Drive and Control of a Swimming Micro Robot
,”
Proceedings of IEEE International Conference Robotics and Automation
, Washington, DC, pp.
1131
1136
.
10.
Zhang
,
Y.
,
Liu
,
G.
, and
Li
,
H.
, 2006, “
Development of a Micro Swimming Robot Using Optimized Giant Magnetostrictive Thin Films
,”
Applied Bionics and Biomechanics
,
3
(
3
), pp.
161
170
.
11.
Zhang
,
Y.
, and
Liu
,
G.
, 2005, “
Analysis and Experiments of a Wireless Swimming Micro Robot
,”
Proceedings of IEEE International Conference Mechatronics and Automation
, Niagara Falls, ON, Canada, pp.
946
950
.
12.
Body
,
C.
,
Reyne
,
G.
, and
Meunier
,
G.
, 1997, “
Nonlinear Finite Element Modeling of Magneto-Mechanical Phenomenon in Giant Magnetostrictive Thin Films
,”
IEEE Trans. Magn.
0018-9464,
33
(
2
), pp.
1620
1623
.
13.
Honda
,
T.
,
Aral
,
K.
, and
Yamaguchi
,
M.
, 1994, “
Fabrication of Magnetostrictive Actuators Using Rare-Earth (Tb,Sm)-Fe Thin Films
,”
J. Appl. Phys.
0021-8979,
76
(
10
), pp.
6994
6999
.
14.
Honda
,
T.
,
Arai
,
K.
, and
Yamaguchi
,
M.
, 1997, “
Basic Properties of Magnetostrictive Actuators Using Tb-Fe Thin Film
,”
IEICE Trans. Electron.
,
E80-C
(
2
), pp.
232
237
. 1046-8021
15.
Tse
,
F.
,
Morse
,
I. E.
, and
Hinkle
,
R. T.
, 1978,
Mechanical Vibration Theory and Application
,
2nd ed.
,
Allyn and Bacon
,
Boston, MA
.
16.
Vennard
,
J. K.
, and
Street
,
R. L.
, 1975,
Elementary Fluid Mechanics
,
Wiley
,
New York
.
17.
Laurent
,
G.
, and
Piat
,
E.
, 2001, “
Efficiency of Swimming Microrobots Using Ionic Polymer Metal Composite Actuators
,”
Proceedings of IEEE International Conference Robotics and Automation
, Seoul, Korea, pp.
3914
3919
.
18.
Behkam
,
B.
, and
Sitti
,
M.
, 2005, “
Modeling and Testing of a Biomimetic Flagellar Propulsion Method for Microscale Biomedical Swimming Robots
,”
Proceedings of IEEE/ASME International Conference Advanced Intelligent Mechatronics
, Monterey, CA, pp.
37
42
.
You do not currently have access to this content.