This article deals with nonlinear modeling of air-fuel ratio (AFR) dynamics of gasoline engines during transient operation. With a collection of input-output data measured near several operating points of the commercial engine, we have identified a global model of the system. The global model structure comes out of the modeling principles based on a weighting of local linear ARX model parameters in dependency on the operating point. It was found that the studied global model has the ability to approximate nonlinear effects and varying response time as well as varying time delay of air-fuel ratio dynamics. The advantage of the local linear approach is that it is flexible to fit experimental data and provides an appropriate structure for advanced nonlinear control algorithm synthesis. Moreover, the proposed nonlinear AFR model with identified numeric values of parameters listed in this article can be used for simulation purposes and also for testing of control algorithms.

1.
Guzzella
,
L.
, and
Onder
,
C. H.
, 2004,
Introduction to Modeling and Control of Internal Combustion Engine
,
Springer
,
New York
.
2.
Powell
,
J. D.
,
Fekete
,
N. P.
, and
Chang
,
C. F.
, 1998, “
Observer-Based Air-Fuel Ratio Control
,”
IEEE Control Syst. Mag.
0272-1708,
18
(
5
), pp.
72
83
.
3.
Hendricks
,
E.
,
Chevalier
,
A.
,
Jensen
,
M.
,
Sorenson
,
S. C.
,
Trumpy
,
D.
, and
Asik
,
J.
, 1996, “
Modelling of the Intake Manifold Filling Dynamics
,” SAE Technical Paper No. 960037.
4.
Aquino
,
C. F.
, 1981, “
Transient a/f Control Characteristics of the 5liter Central Fuel Injection Engine
,” SAE Technical Paper No. 810494.
5.
Onder
,
C. H.
,
Roduner
,
C. A.
,
Simons
,
M. R.
, and
Geering
,
H. P.
, 1998, “
Wall-Wetting Parameters Over the Operating Region of a Sequential Fuel-Injected Si Engine
,” SAE Technical Paper No. 980792.
6.
Locatelli
,
M.
,
Onder
,
C. H.
, and
Geering
,
H. P.
, 2004, “
Exhaust-Gas Dynamics Model for Identification Purposes
,” SAE 2003 Transactions Paper No. 2003-01-0368.
7.
Hendricks
,
E.
, and
Luther
,
J. B.
, 2001, “
Model and Observer Based Control of Internal Combustion Engines
,”
Proceedings of MECA, (Modeling, Emissions and Control in Automotive Engines)
,
Salerno
,
Italy
.
8.
Nelles
,
O.
, 2001,
Nonlinear System Identification
,
Springer
,
New York
.
9.
Manzie
,
Ch.
,
Palaniswami
,
M.
,
Ralph
,
D.
,
Watson
,
H.
, and
Yi
,
X.
, 2002, “
Model Predictive Control of a Fuel Injection System With a Radial Basis Function Network Observer
,
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
648
658
.
10.
Wang
,
S. W.
,
Yu
,
D. L.
,
Gomm
,
J. B.
,
Page
,
G. F.
, and
Douglas
,
S. S.
, 2006, “
Adaptive Neural Network Model Based Predictive Control for Air-Fuel Ratio of Si Engines
,”
Eng. Applic. Artif. Intell.
0952-1976,
19
, pp.
189
200
.
11.
Gorinevsky
,
D.
,
Cook
,
J.
, and
Vukovich
,
G.
, 2003, “
Nonlinear Predictive Control of Transients in Automotive VCT Engine Using Nonlinear Parametric Approximation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
3
), pp.
429
438
.
12.
Arsie
,
I.
,
Pianese
,
C.
, and
Sorrentino
,
M.
, 2006, “
A Procedure to Enhance Identification of Recurrent Neural Networks for Simulating Air-Fuel Ratio Dynamics in Si Engines
,”
Eng. Applic. Artif. Intell.
0952-1976,
19
, pp.
65
77
.
13.
Lenz
,
U.
, and
Schroeder
,
D.
, 1996, “
Artificial Intelligence for Combustion Engine Control
,” SAE Technical Paper No. 960328.
14.
Copp
,
D. G.
,
Burnham
,
K. J.
, and
Lockett
,
F. P.
, 1998, “
Model Comparison for Feedforward Air/Fuel Ratio Control
,”
IEE UKACC International Conference on Control, (Control’98)
,
Swansea
,
UK
.
15.
Alippi
,
C.
,
de Russis
,
C.
, and
Piuri
,
V.
, 2003, “
A Neural-Network Based Control Solution to Air-Fuel Ratio Control for Automotive Fuel-Injection Systems
,”
IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
1094-6977,
33
(
2
), pp.
259
268
.
16.
Osburn
,
A. W.
, and
Franchek
,
M. A.
, 2004, “
Transient Air/Fuel Ratio Controller Identification Using Repetitive Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
781
789
.
17.
Murray-Smith
,
R.
, and
Johansen
,
T. A.
, 1997,
Multiple Model Approaches to Modelling and Control
,
Taylor & Francis
,
London
.
18.
Isermann
,
R.
, and
Müller
,
N.
, 2003, “
Design of Computer Controlled Combustion Engines
,”
Mechatronics
0957-4158,
13
(
10
), pp.
1067
1089
.
19.
Hafner
,
M.
,
Schuler
,
M.
, and
Nelles
,
O.
, 1999, “
Dynamical Identification and Control of Combustion Engine Exhaust
,”
Proceedings of the American Control Conference
,
San Diego, CA
, pp.
222
226
.
20.
Johansen
,
T. A.
,
Hunt
,
K. J.
,
Gawthrop
,
P. J.
, and
Fritz
,
H.
, 1998, “
Off-Equilibrium Linearisation and Design of Gain-Scheduled Control With Application to Vehicle Speed Control
,”
Control Eng. Pract.
0967-0661,
6
(
2
), pp.
167
180
.
21.
Ljung
,
L.
, 1999,
System Identification: Theory for the User
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Johansen
,
T. A.
, and
Foss
,
B. A.
, 1993, “
Constructing Narmax Models Using Armax Models
,”
Int. J. Control
0020-7179,
58
(
5
), pp.
1125
1153
.
23.
Jones
,
V. K.
,
Ault
,
B. A.
,
Franklin
,
G. F.
, and
Powell
,
J. D.
, 1995, “
Identification and Air-Fuel Ratio Control of a Spark Ingnition Engine
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
3
(
1
), pp.
14
21
.
24.
Söderström
,
T.
, and
Stoica
,
P.
, 1989,
System Identification
,
Prentice-Hall
,
New York
.
25.
Geering
,
H. P.
,
Onder
,
C. H.
,
Roduner
,
C. A.
,
Dyntar
,
D.
, and
Matter
,
D.
, 2002, “
Icx-3—A Flexible Interface Chip for Research in Engine Control
,”
Proceedings of the FISITA 2002 World Automotive Congress
,
Helsinky
, pp.
1
4
.
26.
Zhu
,
G. G.
, 2000, “
Weighted Multirate Q-Markov Cover Identification Using PRBS-An Application to Engine Systems
,
Math. Probl. Eng.
1024-123X,
6
(
2–3
), pp.
201
224
.
You do not currently have access to this content.