A dynamic system model is proper for a particular application if it achieves the accuracy required by the application with minimal complexity. Because model complexity often—but not always—correlates inversely with simulation speed, a proper model is often alternatively defined as one balancing accuracy and speed. Such balancing is crucial for applications requiring both model accuracy and speed, such as system optimization and hardware-in-the-loop simulation. Furthermore, the simplicity of proper models conduces to control system analysis and design, particularly given the ease with which lower-order controllers can be implemented compared to higher-order ones. The literature presents many algorithms for deducing proper models from simpler ones or reducing complex models until they become proper. This paper presents a broad survey of the proper modeling literature. To simplify the presentation, the algorithms are classified into frequency, projection, optimization, and energy based, based on the metrics they use for obtaining proper models. The basic mechanics, properties, advantages, and limitations of the methods are discussed, along with the relationships between different techniques, with the intention of helping the modeler to identify the most suitable proper modeling method for a given application.

1.
Wilson
,
B. H.
, and
Stein
,
J. L.
, 1992, “
An Algorithm for Obtaining Minimum-Order Models of Distributed and Discrete Systems
,”
Proceedings of Winter Annual Meeting of the American Society of Mechanical Engineering
, Anaheim, CA, Nov. 8–13,
ASME
,
New York
, Vol.
41
, pp.
47
58
.
2.
Assanis
,
D.
,
Bryzik
,
W.
,
Chalhoub
,
N.
,
Filipi
,
Z.
,
Henein
,
N.
,
Jung
,
D.
,
Liu
,
X.
,
Louca
,
L.
,
Moskwa
,
J.
,
Munns
,
S.
,
Overholt
,
J.
,
Papalambros
,
P.
,
Riley
,
S.
,
Rubin
,
Z.
,
Sendur
,
P.
,
Stein
,
J.
, and
Zhang
,
G.
, 1999, “
Integration and Use of Diesel Engine, Driveline and Vehicle Dynamics Models for Heavy Duty Truck Simulation
,”
Proceedings of 1999 SAE Congress
, Detroit, MI,
SAE
,
Warrendale, PA
.
3.
Kozaki
,
T.
,
Mori
,
H.
,
Fathy
,
H. K.
, and
Gopalswamy
,
S.
, 2004, “
Balancing the Speed and Fidelity of Automotive Powertrain Models through Surrogation
,”
Proceedings of 2004 ASME International Mechanical Engineering Congress and Exposition
, Anaheim, CA, Nov. 13–19,
ASME
,
New York
, Vol.
73
, pp.
249
258
.
4.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 1996,
Multivariable Feedback Control: Analysis and Design
,
Wiley
,
New York
.
5.
Elrazaz
,
Z.
, and
Sinha
,
N. K.
, 1981, “
A Review of Some Model Reduction Techniques
,”
Can. J. Electr. Comput. Eng.
0840-8688,
6
(
1
), pp.
34
40
.
6.
Lamba
,
S. S.
, and
Mahmoud
,
M. S.
, 1982, “
Model Simplification—An Overview
,”
Proceedings of Theory and Application of Digital Control, Proceedings of the IFAC Symposium
,
Pergamon
,
Oxford
, pp.
479
487
.
7.
Saksena
,
V. R.
,
O’Reilly
,
J.
, and
Kokotovic
,
P. V.
, 1984, “
Singular Perturbations and Time-Scale Methods in Control Theory: Survey 1976-83
,”
Automatica
0005-1098,
20
(
3
), pp.
273
293
.
8.
Bertrand
,
P.
,
Duc
,
G.
, and
Michailesco
,
G.
, 1985, “
Développements Récents Sur La Réduction De Modèles
,”
Automatique-Productique Informatique Industrielle
,
19
(
2
), pp.
131
146
.
9.
Sugimoto
,
S.
,
Kaino
,
E.
, and
Mori
,
Y.
, 1985, “
Comparative Studies for Several Model Reduction Algorithms
,”
Proceedings of International Conference—Control 85
, Cambridge, UK, Jul. 9–11,
IEE
,
New York
, Publication No. 252, pp.
673
678
.
10.
Fortuna
,
L.
,
Nunnari
,
G.
, and
Gallo
,
A.
, 1992,
Model Order Reduction Techniques with Applications in Electrical Engineering
,
Springer-Verlag
,
London
.
11.
Gugercin
,
S.
, and
Antoulas
,
A. C.
, 2000, “
A Comparative Study of 7 Algorithms for Model Reduction
,”
Proceedings of 39th IEEE Conference on Decision and Control
, Sydney, Australia, Dec. 12–15,
Institute of Electrical and Electronics Engineers, Inc.
,
Piscataway, NJ
, Vol.
3
, pp.
2367
2372
.
12.
Antoulas
,
A. C.
,
Sorensen
,
D. C.
, and
Gugercin
,
S.
, 2001, “
A Survey of Model Reduction Methods for Large Scale Systems
,”
Contemp. Math.
0271-4132,
280
, pp.
193
219
.
13.
Antoulas
,
A. C.
, and
Gugercin
,
S.
, 2002, “
A New Approach to Model Reduction Which Preserves Stability and Passivity: An Overview
,”
Proceedings of IEEE Conference on Decision and Control
, Las Vegas, NV, Dec. 10-13,
Institute of Electrical and Electronics Engineers, Inc.
, Vol.
3
, pp.
2544
2545
.
14.
Gugercin
,
S.
, and
Antoulas
,
A. C.
, 2004, “
A Survey of Model Reduction by Balanced Truncation and Some New Results
,”
Int. J. Control
0020-7179,
77
(
8
), pp.
748
766
.
15.
Qu
,
Z.-Q.
, 2004,
Model Order Reduction Techniques: With Applications in Finite Element Analysis
,
Springer
,
London
.
16.
Bultheel
,
A.
, and
Van Barel
,
M.
, 1986, “
Pade Techniques for Model Reduction in Linear System Theory: A Survey
,”
J. Comput. Appl. Math.
0377-0427,
14
(
3
), pp.
401
438
.
17.
Davison
,
E. J.
, 1966, “
A Method for Simplifying Linear Dynamic Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-11
(
1
), pp.
93
101
.
18.
Marshall
,
S. A.
, 1966, “
An Approximate Method for Reducing the Order of a Linear System
,”
Control
,
10
, pp.
642
643
.
19.
Chidambara
,
M. R.
, 1967, “
On “A Method for Simplifying Linear Dynamic Systems”
,”
IEEE Trans. Autom. Control
0018-9286,
AC-12
(
6
), pp.
119
121
.
20.
Chidambara
,
M. R.
, 1967, “
Further Comments on “A Method for Simplifying Linear Dynamic Systems”
,”
IEEE Trans. Autom. Control
0018-9286,
AC-12
(
6
), pp.
799
800
.
21.
Chidambara
,
M. R.
, and
Davison
,
E. J.
, 1967, “
Further Remarks on Simplifying Linear Dynamic Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-12
(
2
), pp.
213
214
.
22.
Davison
,
E. J.
, 1968, “
A New Method for Simplifying Large Linear Dynamic Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-13
(
2
), pp.
215
216
.
23.
Fossard
,
A.
, 1970, “
On a Method for Simplifying Linear Dynamic Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-15
(
2
), pp.
261
262
.
24.
Mitra
,
D.
, 1967, “
On the Reduction of Complexity of Linear Dynamic Models
,” AEEW-R520, United Kingdom Atomic Energy Authority, Winfrith.
25.
Mitra
,
D.
, 1969, “
The Reduction of Complexity of Linear Time Invariant Dynamical Systems
,”
Proceedings of IFAC World Congress
, Warsaw, Poland, pp.
19
33
.
26.
Aoki
,
M.
, 1968, “
Control of Large-Scale Dynamic Systems by Aggregation
,”
IEEE Trans. Autom. Control
0018-9286,
AC-13
(
3
), pp.
246
253
.
27.
Hickin
,
J.
, and
Sinha
,
N. K.
, 1975, “
Aggregation Matrices for a Class of Low-Order Models for Large-Scale Systems
,”
Electron. Lett.
0013-5194,
11
(
9
), p.
186
.
28.
Siret
,
J. M.
,
Michailesco
,
G.
, and
Bertrand
,
P.
, 1977, “
Representation of Linear Dynamical Systems by Aggregated Models
,”
Int. J. Control
0020-7179,
26
(
1
), pp.
121
128
.
29.
Hickin
,
J.
, 1978, “
A Unified Theory of Model Reduction for Linear Time Invariant Dynamical Systems
,” Ph.D. thesis, McMaster University, Hamilton.
30.
Aoki
,
M.
, 1978, “
Some Approximation Methods for Estimation and Control of Large Scale Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-23
(
2
), pp.
173
182
.
31.
Hickin
,
J.
, and
Sinha
,
N. K.
, 1980, “
Model Reduction for Linear Multivariable Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-25
(
6
), pp.
1121
1127
.
32.
Prandtl
,
L.
, 1904, “
Über Flüssigkeitsbewegung Bei Sehr Kleiner Reibung
,”
Proceedings of III. Internationales Mathematiker Kongress
, Heidelberg, Germany.
33.
Tikhonov
,
A.
, 1948, “
On the Dependence of the Solutions of Differential Equations on a Small Parameter
,”
Mat. Sb.
0368-8666,
22
, pp.
193
204
.
34.
Levinson
,
N.
, 1950, “
Perturbations of Discontinuous Solutions of Non-Linear Systems of Differential Equations
,”
Acta Math.
0001-5962,
82
, pp.
71
106
.
35.
Vasileva
,
A. B.
, 1963, “
Asymptotic Behavior of Solutions to Certain Problems Involving Nonlinear Differential Equations Containing a Small Parameter Multiplying the Highest Derivatives
,”
Russ. Math. Surveys
0036-0279,
18
, pp.
13
81
.
36.
Wasow
,
W.
, 1965,
Asymptotic Expansions for Ordinary Differential Equations
,
Wiley-Interscience
,
New York
.
37.
Kokotovic
,
P.
, and
Sannuti
,
P.
, 1968, “
Singular Perturbation Method for Reducing Model Order in Optimal Control Design
,”
IEEE Trans. Autom. Control
0018-9286,
AC-13
(
4
), pp.
377
384
.
38.
Kokotovic
,
P. V.
,
O’Malley
,
R. E.
, Jr.
, and
Sannuti
,
P.
, 1976, “
Singular Perturbations and Order Reduction in Control Theory–An Overview
,”
Automatica
0005-1098,
12
(
2
), pp.
123
132
.
39.
Kokotovic
,
P. V.
, 1984, “
Applications of Singular Perturbation Techniques to Control-Problems
,”
SIAM Rev.
0036-1445,
26
(
4
), pp.
501
550
.
40.
Kokotovic
,
P.
,
Khalil
,
H. K.
, and
O’Reilly
,
J.
, 1986,
Singular Perturbation Methods in Control: Analysis and Design
,
Academic
,
London
.
41.
Liu
,
Y.
, and
Anderson
,
B. D. O.
, 1989, “
Singular Perturbation Approximation of Balanced Systems
,”
Int. J. Control
0020-7179,
50
(
4
), pp.
1379
1405
.
42.
Ferris
,
J. B.
,
Stein
,
J. L.
, and
Bernitsas
,
M. M.
, 1998, “
Development of Proper Models of Hybrid Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
(
3
), pp.
328
333
.
43.
Walker
,
D. G.
,
Stein
,
J. L.
, and
Ulsoy
,
A. G.
, 2000, “
An Input-Output Criterion for Linear Model Deduction
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
507
513
.
44.
Wilson
,
B. H.
, and
Taylor
,
J. H.
, 1998, “
A Frequency Domain Model-Order-Deduction Algorithm for Linear Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
(
2
), pp.
185
192
.
45.
Taylor
,
J. H.
, and
Wilson
,
B. H.
, 1995, “
A Frequency-Domain Model-Order-Deduction Algorithm for Nonlinear Systems
,”
Proceedings of International Conference on Control Applications
, Albany, NY, Sep. 28–29,
IEEE
,
Piscataway, NJ
, pp.
1053
1058
.
46.
Pirvu
,
A.-M.
,
Dauphin-Tanguy
,
G.
, and
Kubiak
,
P.
, 2007, “
Automatic System for Bond Graph Model Adaptation—Application to an Electro-Hydrostatic Actuator
,”
Proceedings of 2007 International Conference on Bond Graph Modeling and Simulation (ICBGM ’07)
, San Diego, CA, Jan. 14–17,
J.
Granda
and
F.
Cellier
, eds.,
SCS
,
San Diego, CA
, pp.
35
41
.
47.
Kisung
,
S.
,
Zhun
,
F.
,
Jianjun
,
H.
,
Goodman
,
E. D.
, and
Rosenberg
,
R. C.
, 2003, “
Toward a Unified and Automated Design Methodology for Multi-Domain Dynamic Systems Using Bond Graphs and Genetic Programming
,”
Mechatronics
0957-4158,
13
(
8–9
), pp.
851
885
.
48.
Fan
,
Z.
,
Seo
,
K.
,
Hu
,
J.
,
Goodman
,
E. D.
, and
Rosenberg
,
R. C.
, 2004, “
A Novel Evolutionary Engineering Design Approach for Mixed-Domain Systems
,”
Eng. Optimiz.
0305-215X,
36
(
2
), pp.
127
147
.
49.
Margolis
,
D. L.
, and
Young
,
G. E.
, 1977, “
Reduction of Models of Large Scale Lumped Structures Using Normal Modes and Bond Graphs
,”
J. Franklin Inst.
0016-0032,
304
(
1
), pp.
65
79
.
50.
Fertis
,
D. G.
, 1995,
Mechanical and Structural Vibrations
,
Wiley
,
New York
.
51.
Mohanty
,
P.
, and
Rixen
,
D. J.
, 2004, “
Operational Modal Analysis in the Presence of Harmonic Excitation
,”
J. Sound Vib.
0022-460X,
270
(
1–2
), pp.
93
109
.
52.
Vukazich
,
S. M.
,
Mish
,
K. D.
, and
Romstad
,
K. M.
, 1996, “
Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis
,”
J. Struct. Eng.
0733-9445,
122
(
12
), pp.
1418
1426
.
53.
Li
,
A.
, and
Dowell
,
E. H.
, 2004, “
Asymptotic Modal Analysis of Dynamical Systems: The Effect of Modal Cross-Correlation
,”
J. Sound Vib.
0022-460X,
276
(
1–2
), pp.
65
80
.
54.
Hurty
,
W. C.
, 1960, “
Vibrations of Structural Systems by Component Mode Synthesis
,”
J. Engrg. Mech. Div.
0044-7951,
86
(EM4, Part 1), pp.
51
69
.
55.
Hurty
,
W. C.
, 1965, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
0001-1452,
3
(
4
), pp.
678
685
.
56.
Craig
,
J. R. R.
, and
Bampton
,
M. C. C.
, 1968, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
0001-1452,
6
(
7
), pp.
1313
1319
.
57.
Aoyama
,
Y.
, and
Yagawa
,
G.
, 2001, “
Large-Scale Eigenvalue Analysis of Structures Using Component Mode Synthesis
,”
JSME Int. J., Ser. A
1340-8046,
44
(
4
), pp.
631
640
.
58.
Apiwattanalunggarn
,
P.
,
Shaw
,
S. W.
, and
Pierre
,
C.
, 2005, “
Component Mode Synthesis Using Nonlinear Normal Modes
,”
Nonlinear Dyn.
0924-090X,
41
(
1–3
), pp.
17
46
.
59.
Moon
,
J. D.
, and
Cho
,
D. W.
, 1992, “
A Component Mode Synthesis Applied to Mechanisms for an Investigation of Vibration
,”
J. Sound Vib.
0022-460X,
157
(
1
), pp.
67
79
.
60.
Sung
,
S. H.
, and
Nefske
,
D. J.
, 1986, “
Component Mode Synthesis of a Vehicle Structural-Acoustic System Model
,”
AIAA J.
0001-1452,
24
(
6
), pp.
1021
1026
.
61.
Verros
,
G.
, and
Natsiavas
,
S.
, 2002, “
Ride Dynamics of Nonlinear Vehicle Models Using Component Mode Synthesis
,”
J. Vibr. Acoust.
0739-3717,
124
(
3
), pp.
427
434
.
62.
Karpel
,
M.
,
Moulin
,
B.
, and
Feldgun
,
V.
, 2003, “
Component Mode Synthesis of a Vehicle System Model Using the Fictitious Mass Method
,”
Proceedings of 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Norfolk, VA, Apr. 7–10,
American Inst. Aeronautics and Astronautics Inc.
,
Reston, VA
, Vol.
3
, pp.
1836
1845
.
63.
Arnoldi
,
W. E.
, 1951, “
The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem
,”
Q. Appl. Math.
0033-569X,
9
(
1
), pp.
17
29
.
64.
Sorensen
,
D. C.
, 1992, “
Implicit Application of Polynomial Filters in a K-Step Arnoldi Method
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
13
(
1
), pp.
357
385
.
65.
Lanczos
,
C.
, 1950, “
An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators
,”
J. Res. Natl. Bur. Stand.
0160-1741,
45
(
4
), pp.
255
282
.
66.
Gallivan
,
K.
,
Grimme
,
E.
, and
Van Dooren
,
P.
, 1994, “
Pade Approximation of Large-Scale Dynamic Systems with Lanczos Methods
,”
Proceedings of 33rd IEEE Conference on Decision and Control
, Lake Buena Vista, FL, Dec. 14–16,
IEEE
,
Piscataway, NJ
, Pt. 1,
1
, pp.
443
448
.
67.
Ruhe
,
A.
, 1994, “
Rational Krylov Algorithms for Nonsymmetric Eigenvalue Problems II: Matrix Pairs
,”
Linear Algebr. Appl.
0024-3795,
197
, pp.
283
295
.
68.
Grimme
,
E. J.
, 1997, “
Krylov Projection Methods for Model Reduction
,” Ph.D. thesis, University of Illinois, Urbana-Champaign.
69.
Byrnes
,
C. I.
, and
Lindquist
,
A.
, 1982, “
The Stability and Instability of Partial Realizations
,”
Syst. Control Lett.
0167-6911,
2
(
2
), pp.
99
105
.
70.
Alexandro
, Jr.,
F. J.
, 1984, “
Stable Partial Padé Approximations for Reduced-Order Transfer Functions
,”
IEEE Trans. Autom. Control
0018-9286,
AC-29
(
2
), pp.
159
162
.
71.
Shamash
,
Y.
, 1974, “
Stable Reduced-Order Models Using Pade-Type Approximations
,”
IEEE Trans. Autom. Control
0018-9286,
AC-19
(
5
), pp.
617
618
.
72.
Goldman
,
M. J.
,
Porras
,
W. J.
, and
Leondes
,
C. T.
, 1981, “
Multivariable Systems Reduction Via Cauer Forms
,”
Int. J. Control
0020-7179,
34
(
4
), pp.
623
650
.
73.
Shieh
,
L.-S.
,
Chang
,
F.-R.
, and
Yates
,
R. E.
, 1986, “
The Generalized Matrix Continued-Fraction Descriptions and Their Application to Model Simplification
,”
Int. J. Syst. Sci.
0020-7721,
17
(
1
), pp.
1
19
.
74.
Chen
,
C. F.
, 1974, “
Model Reduction of Multivariable Control Systems by Means of Matrix Continued Fractions
,”
Int. J. Control
0020-7179,
20
(
2
), pp.
225
238
.
75.
Chen
,
C. F.
, and
Shieh
,
L. S.
, 1968, “
A Novel Approach to Linear Model Simplification
,”
Int. J. Control
0020-7179,
8
(
6
), pp.
561
570
.
76.
Chen
,
C. F.
, and
Shieh
,
L. S.
, 1969, “
Continued Fraction Inversion by Routh’s Algorithm
,”
IEEE Trans. Circuit Theory
0018-9324,
CT-16
(
2
), pp.
197
202
.
77.
Khatwani
,
K. J.
, and
Tiwari
,
R. K.
, 1978, “
On Lossless Bandpass Ladder Networks
,”
IEEE Trans. Circuits Syst.
0098-4094,
CAS-25
(
10
), pp.
887
889
.
78.
Gragg
,
W. B.
, and
Lindquist
,
A.
, 1983, “
On the Partial Realization Problem
,”
Linear Algebr. Appl.
0024-3795,
50
, pp.
277
319
.
79.
Hutton
,
M. F.
, and
Friedland
,
B.
, 1975, “
Routh Approximations for Reducing Order of Linear, Time-Invariant Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-20
(
3
), pp.
329
337
.
80.
Chen
,
T. C.
,
Han
,
K. W.
, and
Chang
,
C. Y.
, 1979, “
Reduction of Transfer Functions by the Stability-Equation Method
,”
J. Franklin Inst.
0016-0032,
308
(
4
), pp.
389
404
.
81.
Shamash
,
Y.
, 1975, “
Model Reduction Using the Routh Stability Criterion and the Pade Approximation Technique
,”
Int. J. Control
0020-7179,
21
(
3
), pp.
475
484
.
82.
Pal
,
J.
, 1979, “
Stable Reduced-Order Padé Approximation Using the Routh–Hurwitz Array
,”
Electron. Lett.
0013-5194,
15
(
8
), pp.
225
226
.
83.
Pal
,
J.
, and
Ray
,
L. M.
, 1980, “
Stable Padé Approximants to Multivariable Systems Using a Mixed Method
,”
Proc. IEEE
0018-9219,
68
(
1
), pp.
176
178
.
84.
Chen
,
T. C.
,
Chang
,
C. Y.
, and
Han
,
K. W.
, 1980, “
Model Reduction Using the Stability-Equation Method and the Padé Approximation Method
,”
J. Franklin Inst.
0016-0032,
309
(
6
), pp.
473
490
.
85.
Chen
,
T. C.
,
Chang
,
C. Y.
, and
Han
,
K. W.
, 1980, “
Model Reduction Using the Stability-Equation Method and the Continued-Fraction Method
,”
Int. J. Control
0020-7179,
32
(
1
), pp.
81
94
.
86.
de Villemagne
,
C.
, and
Skelton
,
R. E.
, 1987, “
Model Reductions Using a Projection Formulation
,”
Int. J. Control
0020-7179,
46
(
6
), pp.
2141
2169
.
87.
Adamjan
,
V. M.
,
Arov
,
D. V.
, and
Krein
,
M. G.
, 1971, “
Analytic Properties of Schmidt Pairs for a Hankel Operator and the Generalized Schmidt–Takagi Problem
,”
Math. USSR. Sb.
0025-5734,
15
(
1
), pp.
31
73
.
88.
Kung
,
S.
, 1978, “
A New Identification and Model Reduction Algorithm Via Singular Value Decompositions
,”
Proceedings of 12th Asilomar Conference on Circuits, Systems and Computers
, Pacific Grove, CA, Nov. 6–8,
IEEE
,
Piscataway, NJ
, pp.
705
714
.
89.
Kung
,
S.-Y.
, and
Lin
,
D. W.
, 1981, “
Optimal Hankel-Norm Model Reductions: Multivariable Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-26
(
4
), pp.
832
852
.
90.
Glover
,
K.
, 1984, “
All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and Their L-Infinity Error Bounds
,”
Int. J. Control
0020-7179,
39
(
6
), pp.
1115
1193
.
91.
Safonov
,
M. G.
,
Chiang
,
R. Y.
, and
Limebeer
,
D. J. N.
, 1990, “
Optimal Hankel Model Reduction for Nonminimal Systems
,”
IEEE Trans. Autom. Control
0018-9286,
35
(
4
), pp.
496
502
.
92.
Ionescu
,
V.
, and
Oara
,
C.
, 2001, “
The Four-Block Adamjan-Arov-Krein Problem for Discrete-Time Systems
,”
Linear Algebr. Appl.
0024-3795,
328
(
1–3
), pp.
95
119
.
93.
Gu
,
G.
, 2005, “
All Optimal Hankel-Norm Approximations and Their L-Infinity Error Bounds in Discrete-Time
,”
Int. J. Control
0020-7179,
78
(
6
), pp.
408
423
.
94.
Ball
,
J. A.
, and
Ran
,
A. C. M.
, 1987, “
Optimal Hankel Norm Model Reductions and Wiener-Hopf Factorization. I: The Canonical Case
,”
SIAM J. Control Optim.
0363-0129,
25
(
2
), pp.
362
382
.
95.
Ionescu
,
V.
, and
Oara
,
C.
, 1996, “
Class of Suboptimal and Optimal Solutions to the Discrete Nehari Problem: Characterization and Computation
,”
Int. J. Control
0020-7179,
64
(
3
), pp.
483
509
.
96.
Loève
,
M. M.
, 1955,
Probability Theory
,
Princeton
,
NJ
.
97.
Karhunen
,
K.
, 1946, “
Zur Spektraltheorie Stochastischer Prozesse
,”
Ann. Acad. Sci. Fenn., Ser. A
0365-673X,
37
.
98.
Hotelling
,
H.
, 1933, “
Analysis of a Complex of Statistical Variables into Principal Components
,”
J. Educ. Psychol.
0022-0663,
24
, pp.
417
441
, 498–520.
99.
Lorenz
,
E. N.
, 1956, “
Empirical Orthogonal Functions and Statistical Weather Prediction
,” MIT Department of Meteorology, Cambridge.
100.
Lumley
,
J. L.
, “
The Structure of Inhomogeneous Turbulent Flow
,” 1967,
Atmospheric Turbulence and Radio Wave Propagation
,
A. M.
Yaglom
and
V. I.
Tatarski
, eds.
Nauka
,
Moscow
, pp.
166
178
.
101.
Golub
,
G. H.
, and
Van Loan
,
C. F.
, 1983,
Matrix Computations
,
North Oxford Academic
,
Oxford
.
102.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
0033-569X,
45
(
3
), pp.
561
570
.
103.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures. II. Symmetries and Transformations
,”
Q. Appl. Math.
0033-569X,
45
(
3
), pp.
573
582
.
104.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures. Iii. Dynamics and Scaling
,”
Q. Appl. Math.
0033-569X,
45
(
3
), pp.
583
590
.
105.
Brooks
,
C. L.
,
Karplus
,
M.
, and
Pettitt
,
B. M.
, 1988,
Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics
,
Wiley
,
New York
.
106.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
, 1993, “
Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
25
, pp.
539
575
.
107.
Wu
,
G. G.
,
Liang
,
Y. C.
,
Lin
,
W. Z.
,
Lee
,
H. P.
, and
Lim
,
S. P.
, 2003, “
A Note on Equivalence of Proper Orthogonal Decomposition Methods
,”
J. Sound Vib.
0022-460X,
265
(
5
), pp.
1103
1110
.
108.
Moore
,
B. C.
, 1981, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
0018-9286,
26
(
1
), pp.
17
32
.
109.
Kalman
,
R. E.
, 1965, “
Irreducible Realizations and Degree of a Rational Matrix
,”
J. Soc. Ind. Appl. Math.
0368-4245,
13
(
2
), pp.
520
544
.
110.
Kabamba
,
P. T.
, 1985, “
Balanced Gains and Their Significance for L2 Model Reduction
,”
IEEE Trans. Autom. Control
0018-9286,
AC-30
(
7
), pp.
690
693
.
111.
Penzl
,
T.
, 1999, “
Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
21
(
4
), pp.
1401
1418
.
112.
Sorensen
,
D. C.
, and
Antoulas
,
A. C.
, 2002, “
The Sylvester Equation and Approximate Balanced Reduction
,”
Linear Algebr. Appl.
0024-3795,
351–352
, pp.
671
700
.
113.
Gugercin
,
S.
,
Sorensen
,
D. C.
, and
Antoulas
,
A. C.
, 2003, “
A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations
,”
Numer. Algorithms
1017-1398,
32
(
1
), pp.
27
55
.
114.
Desai
,
U. B.
, and
Pal
,
D.
, 1984, “
A Transformation Approach to Stochastic Model Reduction
,”
IEEE Trans. Autom. Control
0018-9286,
AC-29
(
12
), pp.
1097
1100
.
115.
Green
,
M.
, 1988, “
A Relative Error Bound for Balanced Stochastic Truncation
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
10
), pp.
961
965
.
116.
Green
,
M.
, 1988, “
Balanced Stochastic Realizations
,”
Linear Algebr. Appl.
0024-3795,
98
, pp.
211
247
.
117.
Opdenacker
,
P. C.
, and
Jonckheere
,
E. A.
, 1988, “
A Contraction Mapping Preserving Balanced Reduction Scheme and Its Infinity Norm Error Bounds
,”
IEEE Trans. Circuits Syst.
0098-4094,
35
(
2
), pp.
184
189
.
118.
Jonckheere
,
E. A.
, and
Silverman
,
L. M.
, 1983, “
A New Set of Invariants for Linear Systems—Application to Reduced Order Compensator Design
,”
IEEE Trans. Autom. Control
0018-9286,
AC-28
(
10
), pp.
953
964
.
119.
Enns
,
D. F.
, 1984, “
Model Reduction with Balanced Realizations: An Error Bound and a Frequency Weighted Generalization
,”
Proceedings of 23rd IEEE Conference on Decision and Control
, Las Vegas, NV, Dec. 12–14,
IEEE
,
New York
, pp.
127
132
.
120.
Lin
,
C.-A.
, and
Chiu
,
T.-Y.
, 1992, “
Model Reduction Via Frequency Weighted Balanced Realization
,”
Control Theory Adv. Technol.
0911-0704,
8
(
2
), pp.
341
351
.
121.
Sreeram
,
V.
, and
Anderson
,
B. D. O.
, 1995, “
Frequency Weighted Balanced Reduction Technique: A Generalization and an Error Bound
,”
Proceedings of 34th IEEE Conference on Decision and Control
, New Orleans, Dec. 13–15,
IEEE
,
Piscataway, NJ
, Pt. 4, Vol.
4
, pp.
3576
3581
.
122.
Wang
,
G.
,
Sreeram
,
V.
, and
Liu
,
W. Q.
, 1999, “
New Frequency-Weighted Balanced Truncation Method and an Error Bound
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
9
), pp.
1734
1737
.
123.
Zhou
,
K.
, 1993, “
Frequency-Weighted Model Reduction With L Infinity Error Bound
,”
Syst. Control Lett.
0167-6911,
21
(
2
), pp.
115
125
.
124.
Hahn
,
J.
, and
Edgar
,
T. F.
, 2002, “
Balancing Approach to Minimal Realization and Model Reduction of Stable Nonlinear Systems
,”
Ind. Eng. Chem. Res.
0888-5885,
41
(
9
), pp.
2204
2212
.
125.
Scherpen
,
J. M. A.
, 1993, “
Balancing for Nonlinear Systems
,”
Syst. Control Lett.
0167-6911,
21
(
2
), pp.
143
153
.
126.
Hahn
,
J.
, and
Edgar
,
T. F.
, 2002, “
An Improved Method for Nonlinear Model Reduction Using Balancing of Empirical Gramians
,”
Comput. Chem. Eng.
0098-1354,
26
(
10
), pp.
1379
1397
.
127.
Verriest
,
E. I.
, and
Gray
,
W. S.
, 2001, “
Nonlinear Balanced Realizations
,”
Proceedings of 40th IEEE Conference on Decision and Control
, Orlando, FL, Dec. 4–7,
Institute of Electrical and Electronics Engineers, Inc.
,
Piscataway, NJ
,
4
, pp.
3250
3251
.
128.
Ma
,
X.
, and
De Abreu-Garcia
,
J. A.
, 1988, “
On the Computation of Reduced Order Models of Nonlinear Systems Using Balancing Technique
,”
Proceedings of 27th IEEE Conference on Decision and Control
, Austin, TX, Dec. 7–9,
IEEE
,
Piscataway, NJ
, pp.
1165
1166
.
129.
Skelton
,
R. E.
, 1980, “
Cost Decomposition of Linear Systems With Application to Model Reduction
,”
Int. J. Control
0020-7179,
32
(
6
), pp.
1031
1055
.
130.
Skelton
,
R. E.
, and
Yousuff
,
A.
, 1983, “
Component Cost Analysis of Large Scale Systems
,”
Int. J. Control
0020-7179,
37
(
2
), pp.
285
304
.
131.
Skelton
,
R. E.
, and
Kabamba
,
P.
, 1986, “
Comments on ‘Balanced Gains and Their Significance for L2 Model Reduction’ by P. T. Kabamba
,”
IEEE Trans. Autom. Control
0018-9286,
AC-31
(
8
), pp.
796
797
.
132.
Skelton
,
R. E.
, 1988,
Dynamic Systems Control: Linear Systems Analysis and Synthesis
,
Wiley
,
New York
.
133.
Skelton
,
R. E.
, 1989, “
The Explicit Relation between Component Cost Analysis and Balanced Coordinates
,”
Proceedings of 28th IEEE Conference on Decision and Control
,
IEEE
,
Piscataway, NJ
, Vol.
2
, pp.
1326
1330
.
134.
Hyland
,
D. C.
, and
Bernstein
,
D. S.
, 1985, “
The Optimal Projection Equations for Model Reduction and the Relationships Among the Methods of Wilson, Skelton, and Moore
,”
IEEE Trans. Autom. Control
0018-9286,
AC-30
(
12
), pp.
1201
1211
.
135.
Wilson
,
D. A.
, 1970, “
Optimum Solution of Model-Reduction Problem
,”
Proc. Inst. Electr. Eng.
0020-3270,
117
, pp.
1161
1165
.
136.
Howitt
,
G. D.
, and
Luus
,
R.
, 1990, “
Model Reduction by Minimization of Integral Square Error Performance Indexes
,”
J. Franklin Inst.
0016-0032,
327
(
3
), pp.
343
357
.
137.
Luus
,
R.
, 1980, “
Optimization in Model Reduction
,”
Int. J. Control
0020-7179,
32
(
5
), pp.
741
747
.
138.
Gouda
,
M. M.
,
Danaher
,
S.
, and
Underwood
,
C. P.
, 2002, “
Building Thermal Model Reduction Using Nonlinear Constrained Optimization
,”
Build. Environ.
0360-1323,
37
(
12
), pp.
1255
1265
.
139.
Hachtel
,
G.
,
Sangiovanni-Vincentelli
,
A.
, and
Visvanathan
,
V.
, 1981, “
An Optimization-Based Approach to Model Simplification
,”
Proceedings of IEEE International Symposium on Circuits and Systems
, Chicago, IL, Apr. 27–29,
IEEE
,
Piscataway, NJ
, Vol.
3
, pp.
995
1000
.
140.
Assunção
,
E.
, and
Peres
,
P. L. D.
, 1999, “
A Global Optimization Approach for the H2-Norm Model Reduction Problem
,”
Proceedings of 38th IEEE Conference on Decision and Control
, Phoenix, AZ, Dec. 7–10,
IEEE
,
Piscataway, NJ
, Vol.
2
, pp.
1857
1862
.
141.
Chen
,
H.-F.
, and
Fang
,
H.-T.
, 2002, “
Nonconvex Stochastic Optimization for Model Reduction
,”
J. Global Optim.
0925-5001,
23
(
3–4
), pp.
359
372
.
142.
Spanos
,
J. T.
,
Milman
,
M. H.
, and
Mingori
,
D. L.
, 1992, “
A New Algorithm for L2 Optimal Model Reduction
,”
Automatica
0005-1098,
28
(
5
), pp.
897
909
.
143.
Ferrante
,
A.
,
Krajewski
,
W.
,
Lepschy
,
A.
, and
Viaro
,
U.
, 1999, “
Convergent Algorithm for L2 Model Reduction
,”
Automatica
0005-1098,
35
(
1
), pp.
75
79
.
144.
Megretski
,
A.
, 2006, “
H-Infinity Model Reduction with Guaranteed Suboptimality Bound
,”
Proceedings of 2006 American Control Conference
, Minneapolis, MN, Jun. 14–16,
IEEE
,
Piscataway, NJ
, pp.
448
453
.
145.
Ungar
,
E. E.
, 1997, “
Statistical Energy Analysis
,”
J. Sound Vib.
0022-460X,
31
(
10
), pp.
28
32
.
146.
Rosenberg
,
R. C.
, and
Zhou
,
T.
, 1988, “
Power-Based Simplification of Dynamic System Models
,”
Proceedings of Advances in Design Automation
,
American Society of Mechanical Engineers (ASME)
,
New York
, Vol.
14
, pp.
487
492
.
147.
Rosenberg
,
R. C.
, and
Zhou
,
T.
, 1988, “
Power-Based Model Insight
,”
Proceedings of Automated Modeling for Design
, Nov. 27–Dec. 2,
American Soc of Mechanical Engineers (ASME)
,
New York
, Vol.
8
, pp.
61
67
.
148.
Louca
,
L. S.
,
Stein
,
J. L.
,
Hulbert
,
G. M.
, and
Sprague
,
J.
, 1997, “
Proper Model Generation: An Energy-Based Methodology
,”
Proceedings of 1997 International Conference on Bond Graph Modeling
,
SCS
,
San Diego, CA
,
29
, pp.
44
49
.
149.
Louca
,
L. S.
, and
Stein
,
J. L.
, 1998, “
Physical Interpretation of Reduced Bond Graphs
,”
Proceedings of Second IMACS International Multiconference: Computational Engineering in Systems and Applications (CESA’98)
, Nabeul-Hammamet, Tunisia, Apr. 1–4.
150.
Louca
,
L. S.
, and
Xydas
,
E.
, 2006, “
Model Reduction of Modal Representations
,”
Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition (IMECE 2006)
, Chicago, IL, Nov. 5–10,
ASME
,
New York
.
151.
Louca
,
L. S.
,
Stein
,
J. L.
, and
Hulbert
,
G. M.
, 1998, “
A Physical-Based Model Reduction Metric with an Application to Vehicle Dynamics
,”
Proceedings of Fourth IFAC Nonlinear Control Systems Design Symposium (NOLCOS 98)
, Enschede, Netherlands, Jul. 1–3, Vol.
3
, pp.
607
612
.
152.
Louca
,
L. S.
, and
Yildir
,
U. B.
, 2003, “
Modeling and Reduction Techniques for Studies of Integrated Hybrid Vehicle Systems
,”
Proceedings of Fourth IMACS International Symposium on Mathematical Modeling
, Vienna, Austria, Feb. 5–7, pp.
203
218
.
153.
Rideout
,
D. G.
,
Stein
,
J. L.
, and
Louca
,
L. S.
, 2004, “
Systematic Model Decoupling through Assessment of Power-Conserving Constraints—an Engine Dynamics Case Study
,”
Proceedings of 2004 ASME International Mechanical Engineering Congress and Exposition
, Anaheim, CA, Nov. 13–19,
American Society of Mechanical Engineers
,
New York
, Vol.
2
.
154.
Fathy
,
H. K.
, and
Stein
,
J. L.
, 2005, “
Fundamental Concordances between Balanced Truncation and Activity-Based Model Reduction
,”
Proceedings of IMAACA ’05, Bond Graph Methods for Dynamical Systems
,
A.
Bruzzone
,
G.
Dauphin-Tanguy
,
C.
Frydman
, and
S.
Junco
, eds., Marseille, France, Oct. 20-22, pp.
109
116
.
155.
Rideout
,
D. G.
,
Stein
,
J. L.
, and
Louca
,
L. S.
, 2004, “
System Partitioning and Physical—Domain Model Reduction through Assessment of Bond Graph Junction Structure
,”
Proceedings of IMAACA ’04, Bond Graph Techniques for Modeling Dynamic Systems
, Genoa, Italy, Oct. 28–30,
SCS
,
San Diego, CA
.
156.
Decoster
,
M.
, and
van Cauwenberghe
,
A. R.
, 1976, “
A Comparative Study of Different Reduction Methods (Part 1)
,”
Journal A
0771-1107,
17
(
2
), pp.
68
74
.
157.
Decoster
,
M.
, and
van Cauwenberghe
,
A. R.
, 1976, “
A Comparative Study of Different Reduction Methods (Part 2)
,”
Journal A
0771-1107,
17
(
3
), pp.
125
134
.
158.
Halikias
,
G. D.
,
Limebeer
,
D. J. N.
, and
Glover
,
K.
, 1993, “
A State-Space Algorithm for the Superoptimal Hankel-Norm Approximation Problem
,”
SIAM J. Control Optim.
0363-0129,
31
(
4
), pp.
960
982
.
You do not currently have access to this content.