The purpose of this work is to experimentally demonstrate a fault-tolerant active vibration control system. Active vibration control is achieved using piezoceramic sensors and actuators (transducers) that are attached to a simply supported beam. These transducers are used by a set of optimal H2 feedback compensators to minimize the lateral vibration of a beam. Actuator faults are detected and isolated with a Beard–Jones fault detection filter. This filter is a special case of Luenberger observer, which produces a residual output with specific directional properties in response to a system fault. In this current research work, a new Beard–Jones filter design methodology is introduced that permits its use on high-order systems and also on systems with feed-through dynamics. The output of this detection filter is monitored by a hybrid automaton that determines when faults occur. This hybrid automaton then directs the selection of a feedback compensator specifically designed for the detected system fault state. The result is a vibration control system that is capable of maintaining optimal performance in the presence of system faults.

1.
Fuller
,
C. R.
, 1985, “
Experiments on Reduction of Aircraft Interior Noise Using Active Control of Fuselage Vibration
,”
J. Acoust. Soc. Am.
0001-4966,
78
(
S1
), p.
S88
.
2.
Burke
,
S.
, and
Hubbard
,
J.
, Jr.
, 1987, “
Active Vibration Control of a Simply Supported Beam Using a Spatially Distributed Actuator
,”
IEEE Control Syst. Mag.
0272-1708,
7
(
4
), pp.
25
30
.
3.
Baumann
,
W. T.
,
Saunders
,
W. R.
, and
Robertshaw
,
H. H.
, 1991, “
Active Suppression of Acoustic Radiation From Impulsively Excited Structures
,”
J. Acoust. Soc. Am.
0001-4966,
90
(
6
), pp.
3202
3208
.
4.
Clark
,
R. L.
, and
Cox
,
D. E.
, 1997, “
Multi-Variable Structural Acoustic Control With Static Compensation
,”
J. Acoust. Soc. Am.
0001-4966,
102
(
5
), pp.
2747
2756
.
5.
Baumann
,
O. N.
,
Engels
,
W. P.
, and
Elliott
,
S. J.
, 2004, “
A Comparison of Centralized and Decentralized Control for the Reduction of Kinetic Energy and Radiated Sound Power
,”
Proceedings of Active '04
,
Williamsburg, VA
.
6.
Brennan
,
M. J.
,
Elliott
,
S. J.
, and
Huang
,
X.
, 2006, “
A Demonstration of Active Vibration Isolation Using Decentralized Velocity Feedback Control
,”
Smart Mater. Struct.
0964-1726,
15
(
1
), pp.
N19
N22
.
7.
Frampton
,
K. D.
, 2005, “
Distributed Group-Based Vibration Control With a Networked Embedded System
,”
Smart Mater. Struct.
0964-1726,
14
(
2
), pp.
307
314
.
8.
West-Vukovich
,
G.
,
Davison
,
E.
, and
Hughes
,
P.
, 1984, “
The Decentralized Control of Large Flexible Space Structures
,”
IEEE Trans. Autom. Control
0018-9286,
29
(
10
), pp.
866
879
.
9.
Baumann
,
W. T.
, 1997, “
An Adaptive Feedback Approach to Structural Vibration Suppression
,”
J. Sound Vib.
0022-460X,
205
(
1
), pp.
121
133
.
10.
Douglas
,
S. C.
, 1999, “
Fast Implementations of the Filtered-X LMS and LMS Algorithms for Multichannel Active Noise Control
,”
IEEE Trans. Speech Audio Process.
1063-6676,
7
(
4
), pp.
454
465
.
11.
Mhaskar
,
P.
,
Gani
,
A.
,
El-Farra
,
N. H.
,
McFall
,
C.
,
Christofides
,
P. D.
, and
Davis
,
J. F.
, 2006, “
Integrated Fault-Detection and Fault-Tolerant Control of Process Systems
,”
AIChE J.
0001-1541,
52
(
6
), pp.
2129
2148
.
12.
Zhang
,
X.
,
Parisini
,
T.
, and
Polycarpou
,
M. M.
, 2004, “
Adaptive Fault-Tolerant Control of Nonlinear Uncertain Systems: An Information-Based Diagnostic Approach
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
8
), pp.
1259
1274
.
13.
Jiang
,
J.
, and
Zhang
,
Y.
, 2006, “
Accepting Performance Degradation in Fault-Tolerant Control System Design
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
14
(
2
), pp.
284
292
.
14.
Manjunath
,
T. C.
, and
Bandyopadhyay
,
B.
, 2005, “
Fault Tolerant Control of Flexible Smart Structures Using Robust Decentralized Periodic Output Feedback Techniques
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
624
636
.
15.
Beard
,
R. V.
, 1971, “
Failure Accommodation in Linear Systems Through Self-Reorganization
,” Ph.D. thesis, Massachusetts Institute of Technology, MA.
16.
Chen
,
J.
,
Patton
,
R. J.
, and
Zhang
,
H. Y.
, 1996, “
Design of Unknown Input Observers and Robust Fault Detection Filters
,”
Int. J. Control
0020-7179,
63
(
1
), pp.
85
105
.
17.
Jones
,
H.
, 1973, “
Failure Detection in Linear Systems
,” Report No. T-608.
18.
Kim
,
Y.
, and
Park
,
J.
, 1999, “
An Analysis of Detection Spaces Using Invariant Zeros
,”
Proceedings of the American Control Conference
,
San Diego, CA
.
19.
Scattolini
,
R.
, and
Cattane
,
N.
, 1999, “
Detection of Sensor Faults in a Large Flexible Structure
,”
IEE Proc.: Control Theory Appl.
1350-2379,
146
(
5
), pp.
383
388
.
20.
Byreddy
,
C.
, and
Frampton
,
K. D.
, 2005, “
Simulations of Fault-Adaptive Vibration Control
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
FL
.
21.
Manning
,
W. J.
,
Plummer
,
A. R.
, and
Levesley
,
M. C.
, 2000, “
Vibration Control of a Flexible Beam With Integrated Actuators and Sensors
,”
Smart Mater. Struct.
0964-1726,
9
(
6
), pp.
932
939
.
22.
Thomson
,
W. T.
, and
Dahleh
,
M. D.
, 1998,
Theory of Vibration With Applications
,
Prentice-Hall
,
Upper Saddle River, NJ
.
23.
Clark
,
R. L.
,
Saunders
,
W. R.
, and
Gibbs
,
G. P.
, 1998,
Adaptive Structures: Dynamics and Control
,
Wiley
,
New York
.
24.
Juang
,
J.-N.
, 1994,
Applied System Identification
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
25.
Ljung
,
L.
, 1998,
System Identification: Theory for the User
,
Prentice-Hall
,
Upper Saddle River, NJ
.
26.
Halim
,
D.
, and
Moheimani
,
S. O. R.
, 2003, “
An Optimization Approach to Optimal Placement of Collocated Piezoelectric Actuators and Sensors on a Thin Plate
,”
Mechatronics
0957-4158,
13
(
1
), pp.
27
47
.
27.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1995,
Robust and Optimal Control
,
Prentice-Hall
,
Upper Saddle River, NJ
.
28.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
, 1989, “
State-Space Solutions to Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
0018-9286,
34
(
8
), pp.
831
847
.
29.
Kim
,
Y.
, and
Park
,
J.
, 2003, “
A Condition of the Eigenvalues of Detection Filters for Disturbance Attenuation: An Invariant Zero Approach
,”
Conference on Decision and Control (CDC)
,
HI
.
30.
Kim
,
Y.
, and
Park
,
J.
, 2003, “
Noise Response of Detection Filters: Relation Between Detection Space and Completion Space
,”
IEE Proc.: Control Theory Appl.
1350-2379,
150
(
4
), pp.
443
447
.
31.
Kim
,
Y.
, and
Park
,
J.
, 2005, “
On the Approximation of Fault Directions for Mutual Detectabilty: An Invariant Zero Approach
,”
IEEE Trans. Autom. Control
0018-9286,
50
(
6
), pp.
851
855
.
32.
Park
,
J.
, and
Rizzoni
,
G.
, 1994, “
An Eigenstructure Assignment Algorithm for the Design of Fault-Detection Filters
,”
IEEE Trans. Autom. Control
0018-9286,
39
(
7
), pp.
1521
1524
.
33.
White
,
J. E.
, and
Speyer
,
J. L.
, 1987, “
Detection Filter Design—Spectral Theory and Algorithms
,”
IEEE Trans. Autom. Control
0018-9286,
32
(
7
), pp.
593
603
.
34.
Lin
,
H.
, and
Antsaklis
,
P. J.
, 2005, “
Stability and Stabilizability of Switched Linear Systems: A Short Survey of Recent results
,”
Proceedings of the International Symposium on Intelligent Control and Mediterranean Conference on Control and Automation
,
Limassol, Cyprus
.
35.
Liberzon
,
D.
, and
Tempo
,
R.
, 2003, “
Gradient Algorithm for Finding Common Lyapunov Functions
,”
Proceedings of the IEEE Conference on Decision and Control
,
Hawaii
, pp.
4783
4787
.
36.
Lin
,
H.
, and
Antsaklis
,
P. J.
, 2004, “
A Necessary and Sufficient Condition for Robust Asymptotic Stabilizability of Continuous-Time Uncertain Switched Linear Systems
,”
Proceedings of the IEEE Conference on Decision and Control
,
Atlantis, Bahamas
.
You do not currently have access to this content.