In this paper, a combination of fuzzy clustering estimation and sliding mode control is used to control a chaotic system, which its mathematical model is unknown. It is assumed that the chaotic system has an affine form. At first, the nonlinear noninput part of the chaotic system is estimated by a fuzzy model, without using any input noise signal. Without loss of generality, it is assumed that chaotic behavior is appeared in the absence of input signal. In this case, the recurrent property of chaotic behavior is used for estimating its model. After constructing the fuzzy model, which estimates the noninput part of the chaotic system, control and on-line identification of the input-related section are applied. In this step, the system model will be estimated in normal form, such that the dynamic equations can be used in sliding mode control. Finally, the proposed technique is applied to a Lur’e-like dynamic system and the Lorenz system as two illustrative examples of chaotic systems. The simulation results verify the effectiveness of this approach in controlling an unknown chaotic system.

1.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
, 1990, “
Controlling Chaos
,”
Phys. Rev. Lett.
0031-9007,
64
, pp.
1196
1199
.
2.
Shinbort
,
T.
,
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J.
, 1990, “
Using Chaos to Direct Trajectories to Targets
,”
Phys. Rev. Lett.
0031-9007,
65
, pp.
3215
3218
.
3.
Mehta
,
N. J.
, and
Henderson
,
R. M.
, 1991, “
Controlling Chaos to Generate Aperiodic Orbits
,”
Phys. Rev. A
1050-2947,
44
, pp.
4861
4865
.
4.
Yu
,
X.
,
Chen
,
G.
,
Xia
,
Y.
,
Song
,
Y.
, and
Cao
,
Z.
, 2001, “
An Invariant Manifold Based Method for Chaos Control
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
48
(
8
), pp.
930
937
.
5.
Arecchi
,
F. T.
,
Boccaletti
,
S.
,
Ciofini
,
M.
, and
Meucci
,
R.
, 1998, “
The Control of Chaos: Theoretical Schemes and Experimental Realizations
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
8
(
8
), pp.
1643
1655
.
6.
Hwang
,
C. C.
,
Fung
,
R. F.
,
Hsieh
,
J. Y.
, and
Li
,
W. J.
, 1999, “
A Nonlinear Feedback Control of the Lorenz Equation
,”
Int. J. Eng. Sci.
0020-7225,
37
, pp.
1893
1900
.
7.
Alasty
,
A.
, and
Salarieh
,
H.
, 2007, “
Nonlinear Feedback Control of Chaotic Pendulum in Presence of Saturation Effects
,”
Chaos, Solitons Fractals
0960-0779,
31
(
2
), pp.
292
304
.
8.
Xinghuo
,
Yu
, 1997, “
Variable Structure Control Approach for Controlling Chaos
,”
Chaos, Solitons Fractals
0960-0779,
8
(
9
), pp.
1577
1586
.
9.
Konishi
,
K.
,
Hirai
,
M.
, and
Kokame
,
H.
, 1998, “
Sliding Mode Control for a Class of Chaotic Systems
,”
Phys. Lett. A
0375-9601,
245
, pp.
511
17
.
10.
Tsai
,
H. H.
,
Fuh
,
C. C.
, and
Chang
,
C. N.
, 2002, “
A Robust Controller for Chaotic Systems Under External Excitation
,”
Chaos, Solitons Fractals
0960-0779,
14
, pp.
627
632
.
11.
Fuh
,
C. C.
, and
Tsai
,
H. H.
, 2002, “
Control of Discrete-Time Chaotic Systems via Feedback Linearization
,”
Chaos, Solitons Fractals
0960-0779,
13
, pp.
285
294
.
12.
Liaw
,
Y. M.
, and
Tung
,
P. C.
, 1996, “
Controlling Chaos Via State Feedback Cancellation Under a Noisy Environment
,”
Phys. Lett. A
0375-9601,
211
, pp.
350
356
.
13.
Calvo
,
O.
, and
Cartwright
,
J. H. E.
, 1998, “
Fuzzy Control of Chaos
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
8
, pp.
1743
1747
.
14.
Guan
,
X.
, and
Chen
,
C.
, 2003, “
Adaptive Fuzzy Control for Chaotic Systems With H∞ Tracking Performance
,”
Fuzzy Sets Syst.
0165-0114,
139
, pp.
81
93
.
15.
Ramesh
,
M.
, and
Narayanan
,
S.
, 2001, “
Chaos Control of Bonhoeffer–van der Pol Oscillator Using Neural Networks
,”
Chaos, Solitons Fractals
0960-0779,
12
, pp.
2395
2405
.
16.
Alasty
,
A.
, and
Salarieh
,
H.
, 2004, “
Chaos Control in Bonhoeffer–van der Pol System Using Fuzzy Estimation
,”
Proceedings of ESDA2004, Seventh Biennial Conference on Engineering Systems Design and Analysis
,
Manchester
,
United Kingdom
, Jul. 19–22.
17.
Alasty
,
A.
, and
Salarieh
,
H.
, 2005, “
Controlling the Chaos Using Fuzzy Estimation of OGY and Pyragas Controllers
,”
Chaos, Solitons Fractals
0960-0779,
26
, pp.
379
392
.
18.
Poznyak
,
A. S.
,
Yu
,
W.
, and
Sanchez
,
E. N.
, 1999, “
Identification and Control of Unknown Chaotic Systems Via Dynamic Neural Networks
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
46
(
12
), pp.
1491
1495
.
19.
Salarieh
,
H.
, and
Alasty
,
A.
, 2004, “
Control of Chaotic Systems Using Fuzzy Clustering Identification and Sliding Mode Control
,”
Proceedings of the Sixth International FLINS Conference, Applied Computational Intelligence
,
Blankenberge
,
Belgium
, pp.
623
628
.
20.
Wang
,
L. X.
, 1997,
A Course in Fuzzy Systems and Control
,
Prentice-Hall International Inc.
,
Upper Saddle River, NJ
, Chap. 15, pp.
192
205
.
21.
Moon
,
F. C.
, 1992,
Chaotic and Fractal Dynamics
,
Wiley
, Chap. 2, pp.
61
63
.
22.
Fradkov
,
A. L.
, 2002, “
Control of Chaos: Methods and Applications
,”
Tutorial Presentation at 21st IASTED Conference
(MIC2002).
23.
Slotine
,
J.-J.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 7, pp.
276
307
.
24.
Huang
,
L.
,
Feng
,
R.
, and
Wang
,
M.
, 2004, “
Synchronization of Chaotic Systems via Nonlinear Control
,”
Phys. Lett. A
0375-9601,
320
, pp.
271
275
.
You do not currently have access to this content.