In this paper, we investigate the problem of robust synthesis of a static output feedback controller, with guaranteed H2H cost, in the context of multiple parametric uncertainties. To solve this problem, a random optimization technique based on a bisection method is proposed. The principle is as follows: For a given initial stabilizing controller of the nominal system, the proposed approach iteratively generates a sequence of matrices with a decreasing H2H cost. By a bisection method, this procedure is stopped when the controller reaches the best possible nominal performance that satisfies a given guaranteed H2H cost. Numerical examples show the practical applicability of the proposed method.

1.
Bernstein
,
D.
, 1992, “
Some Open Problems in Matrix Theory Arising in Linear Systems and Control
,”
Linear Algebr. Appl.
0024-3795,
162–164
, pp.
409
432
.
2.
Syrmos
,
V. L.
,
Abdallah
,
C. T.
,
Dorato
,
P.
, and
Grigoriadis
,
K.
, 1997, “
Static Output Feedback-A Survey
,”
Automatica
0005-1098,
33
(
2
), pp.
125
137
.
3.
Astolfi
,
A.
, and
Colenari
,
P.
, 2005, “
Hankel/Toeplitz Matrices and the Static Output Feedback Stabilization Problem
,”
Math. Control, Signals, Syst.
0932-4194,
17
(
4
), pp.
231
268
.
4.
Garcia
,
G.
,
Pradin
,
B.
,
Tabouriech
,
S.
, and
Zeng
,
F.
, 2003, “
Robust Stabilization and Guaranteed Cost Control for Discrete-Time Linear Systems by Static Output Feedback
,”
Automatica
0005-1098,
39
(
9
), pp.
1635
1641
.
5.
Geromel
,
J. C.
,
Souza
,
C. C.
, and
Skelton
,
R. E.
, 1998, “
Static Output Feedback Controllers: Stability and Convexity
,”
IEEE Trans. Autom. Control
0018-9286,
43
, pp.
120
125
.
6.
Hagander
,
P.
, and
Bernhardsson
,
B.
, 1990, “
On the Notion of Strong Stabilization
,”
IEEE Trans. Autom. Control
0018-9286,
AC-35
, pp.
927
929
.
7.
Youla
,
D.
,
Bongiorno
,
J.
, and
Lu
,
C.
, 1974, “
Single Loop Feedback Stabilization of Linear Multivariable Dynamical Systems
,”
Automatica
0005-1098,
10
, pp.
159
173
.
8.
Gu
,
G.
, 1990, “
On the Existence of Linear Optimal Control With Output Feedback
,”
SIAM J. Control Optim.
0363-0129,
28
, pp.
711
719
.
9.
Kucera
,
V.
, and
De Souza
,
C. E.
, 1995, “
A Necessary and Sufficient Condition for Output Feedback Stabilization
,”
Automatica
0005-1098,
31
(
9
), pp.
1357
1359
.
10.
Trofino-Neto
,
A.
, and
Kucera
,
V.
, 1993, “
Stabilization via Static Output Feedback
,”
IEEE Trans. Autom. Control
0018-9286,
38
, pp.
764
765
.
11.
Arzelier
,
D.
, and
Peaucelle
,
D.
, 2002, “
An Iterative Method for Mixed h2∕h∞ Synthesis via Static Output-Feedback
,”
41st IEEE Conference on Decision and Control (CDC’2002)
, Las Vegas, NV, pp.
3464
3469
.
12.
Benton
,
R. E.
, and
Smith
,
D.
Jr.
, 1998, “
Static Output Feedback Stabilization With Prescribed Degree of Stability
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
10
), pp.
1493
1496
.
13.
Cao
,
Y.
,
Lam
,
J.
, and
Sun
,
Y.-X. M.
, 1998, “
Static Output Feedback Stabilization: An ILMI Approach
,”
Automatica
0005-1098,
34
(
12
), pp.
1641
1645
.
14.
Chilali
,
M.
,
Gahinet
,
P.
, and
Apkarian
,
P.
, 1999, “
Robust Pole-Placement in LMI Regions
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
12
), pp.
2257
2270
.
15.
El Ghaoui
,
L.
,
Oustry
,
F.
, and
AitRami
,
M.
, 1997, “
A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems
,”
IEEE Trans. Autom. Control
0018-9286,
42
, pp.
1171
1176
.
16.
Henrion
,
D.
,
Tabouriech
,
S.
, and
Garcia
,
G.
, 1999, “
Output Feedback Robust Stabilization of Uncertain Linear Systems With Saturating Controls. An LMI Approach
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
11
), pp.
2230
2237
.
17.
Leibfritz
,
F.
, 2001, “
An LMI-Based Algorithm for Designing Suboptimal Static h2∕h∞ Output-Feedback Controllers
,”
SIAM J. Control Optim.
0363-0129,
39
(
6
), pp.
1711
1735
.
18.
Peaucelle
,
D.
, and
Arzelier
,
D.
, 2001, “
An Efficient Numerical Solution for h2 Static Output Feedback Synthesis
,”
European Control Conference (ECC’01)
, Porto, Portugal, pp.
3800
3805
.
19.
Feron
,
E.
,
Boyd
,
S.
,
El Ghaoui
,
L.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
, in
Studies in Applied Mathematics
,
SIAM
, Philadelphia, PA.
20.
Davison
,
E. J.
, and
Wang
,
S. H.
, 1975, “
On Pole Assignment in Linear Multivariable Systems Using Output Feedback
,”
IEEE Trans. Autom. Control
0018-9286,
8
, pp.
516
518
.
21.
Kimura
,
H.
, 1977, “
A Further Result on the Problem of Pole Assignment by Output Feedback
,”
IEEE Trans. Autom. Control
0018-9286,
25
(
3
), pp.
458
463
.
22.
Wang
,
X. A.
, 1996, “
Grassmannian, Central Projection, and Output Feedback Pole Assignment of Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
6
), pp.
786
794
.
23.
Toscano
,
R.
, and
Lyonnet
,
P.
, 2006, “
Stabilization of Systems by Static Output Feedback via Heuristic Kalman Algorithm
,”
Comput. Appl. Math.
0101-8205,
5
, pp.
1
12
.
24.
Toscano
,
R.
, 2000, “
A Simple Method to Find a Robust Output Feedback Controller by Random Search Approach
,”
ISA Trans.
0019-0578,
45
(
1
), pp.
35
44
.
25.
Matyas
,
J.
, 1965, “
Random Optimization
,”
Autom. Remote Control (Engl. Transl.)
0005-1179,
26
(
2
), pp.
246
253
.
26.
Spall
,
J. C.
, 2003,
Introduction to Stochastic Search and Optimization
,
John Wiley and Sons
, New York.
27.
Tempo
,
R.
,
Calafiore
,
G.
, and
Dabbene
,
F.
, 2004,
Randomized Algorithms for Analysis and Control of Uncertain Systems
,
Springer-Verlag
, Berlin.
28.
Sun
,
C. C.
,
Chung
,
H. Y.
, and
Chang
,
W. J.
, 2005, “
h2∕h∞ Robust Static Output Feedback Control Design via Mixed Genetic Algorithm and Linear Matrix Inequalities
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
715
722
.
29.
VanAntwerp
,
J. G.
, and
Braatz
,
R. D.
, 2000, “
A Tutorial on Linear and Bilinear Matrix Inequalities
,”
J. Process Control
0959-1524,
10
, pp.
363
385
.
30.
Doyle
,
J.
,
Francis
,
B.
, and
Tannenbaum
,
A.
, 1990,
Feedback Control Theory
,
Macmillan Publishing Co.
, New York.
31.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
, 1989,
Optimal Control, Linear Quadratic Methods
,
Prentice-Hall
, Englewood Cliffs, NJ.
32.
Polyak
,
B. T.
, and
Tempo
,
R.
, 2001, “
Probabilistic Robust Design With Linear Quadratic Regulators
,”
Syst. Control Lett.
0167-6911,
43
, pp.
343
353
.
33.
Larin
,
V. B.
, 2003, “
Stabilization of the System by Static Output Feedback
,”
Comput. Appl. Math.
0101-8205,
2
(
1
), pp.
2
12
.
You do not currently have access to this content.