Least squares support vector machine (LS-SVM) modeling based inverse controller (IC) is presented for excitation control of synchronous generator. This IC strategy design includes two main parts: inverse control law and uncertainty compensation. The inverse control law, designed for the control of plant dynamics, is derived directly based on Taylor expansion and it is implemented using LS-SVM modeling. In addition, a robustness filter in the feedback structure, designed for plant disturbance, is employed as uncertainty compensation. The robust stability of the proposed controller is analyzed based on Lyapunov function. Simulations demonstrate the effectiveness of the IC strategy for excitation control.
Issue Section:
Technical Briefs
Keywords:
compensation,
inverse problems,
least squares approximations,
Lyapunov methods,
machine control,
nonlinear control systems,
robust control,
support vector machines,
synchronous generators,
uncertain systems,
nonlinear control systems,
inverse problems,
support vector machines (SVM),
Taylor expansion,
identification
1.
Li
, C. W.
, and Feng
, Y. K.
, 1991, The Inverse System Method for Multi-Variable Nonlinear Control
, Tsinghua University
, Beijing
.2.
Dai
, X.
, Liu
, J.
, Feng
, C.
, and He
, D.
, 1998, “Neural Network -th Order Inverse System Method for the Control of Nonlinear Continuous Systems
,” IEE Proc.: Control Theory Appl.
1350-2379, 145
, pp. 519
–522
.3.
Plett
, G. L.
, 2003, “Adaptive Inverse Control of Linear and Nonlinear Systems Using Dynamic Neural Networks
,” IEEE Trans. Neural Netw.
1045-9227, 14
, pp. 360
–376
.4.
Li
, H. X.
, and Deng
, H.
, 2006, “An Approximate Internal Model-Based Neural Control for Unknown Nonlinear Discrete Processes
,” IEEE Trans. Neural Netw.
1045-9227, 17
, pp. 659
–669
.5.
Vapnik
, V.
, 1995, The Nature of Statistical Learning Theory
, Springer
, New York
.6.
Suykens
, J. A. K.
, Gestel
, T. V.
, Brabanter
, J. D.
, Moor
, B. D.
, and Vandewalle
, J.
, 2002, Least Squares Support Vector Machines
, World Scientific
, Singapore
.7.
Chan
, W. C.
, Chan
, C. W.
, and Cheung
, K. C.
, 2001, “On the Modelling of Nonlinear Dynamic System Using Support Vector Neural Networks
,” Eng. Applic. Artif. Intell.
0952-1976, 14
, pp. 105
–113
.8.
Suykens
, J. A. K.
, Vandewalle
, J.
, and Moor
, B. D.
, 2001, “Optimal Control by Least Squares Support Machines
,” Neural Networks
0893-6080, 14
, pp. 23
–35
.9.
Dai
, X.
, He
, D.
, Zhang
, T.
, and Zhang
, K.
, 2003, “ANN Generalized Inversion for the Linearization and Decoupling Control of Nonlinear Systems
,” IEE Proc.: Control Theory Appl.
1350-2379, 150
, pp. 267
–277
.10.
Ge
, S. S.
, Zhang
, J.
, and Lee
, T. H.
, 2004, “Adaptive MNN Control for a Class of Nonaffine NARMAX Systems With Disturbances
,” Syst. Control Lett.
0167-6911, 53
, pp. 1
–12
.11.
Kumpati
, S. N.
, and Snehasis
, M.
, 1997, “Adaptive Control Using Neural Networks and Approximate Models
,” IEEE Trans. Neural Netw.
1045-9227, 8
, pp. 475
–485
.12.
Adetona
, O.
, Sathananthan
, S.
, and Keel
, L. H.
, 2004, “Robust Adaptive Control of Nonaffine Nonlinear Plants With Small Input Signal Changes
,” IEEE Trans. Neural Netw.
1045-9227, 15
, pp. 408
–416
.13.
Adetona
, O.
, Garcia
, E.
, and Keel
, L. H.
, 2000, “A New Method for the Control of Discrete Nonlinear Dynamic Systems Using Neural Networks
,” IEEE Trans. Neural Netw.
1045-9227, 11
, pp. 102
–112
.14.
Levin
, A. U.
, and Narendra
, K. S.
, 1996, “Control of Nonlinear Dynamical Systems Using Neural Networks-Part II: Observability, Identification, and Control
,” IEEE Trans. Neural Netw.
1045-9227, 7
, pp. 30
–42
.15.
Spooner
, J. T.
, Maggiore
, M.
, Ordonez
, R.
, and Passino
, K. M.
, 2002, Stable Adaptive Control and Estimation for Nonlinear Systems
, Wiley
, New York
.16.
Kumar
, V. G.
, Harley
, R. G.
, and Wunsch
, D. C.
, 2003, “Dual Heuristic Programming Excitation Neuro-Control for Generators in a Multimachine Power System
,” IEEE Trans. Ind. Appl.
0093-9994, 39
, pp. 382
–394
.17.
Fan
, S.
, Mao
, C. X.
, and Lu
, J. M.
, 2003, “Real-Time Excitation Controller Using Neural Networks
,” Eng. Intell. Syst.
, 11
, pp. 151
–156
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.