Least squares support vector machine (LS-SVM) modeling based inverse controller (IC) is presented for excitation control of synchronous generator. This IC strategy design includes two main parts: inverse control law and uncertainty compensation. The inverse control law, designed for the control of plant dynamics, is derived directly based on Taylor expansion and it is implemented using LS-SVM modeling. In addition, a robustness filter in the feedback structure, designed for plant disturbance, is employed as uncertainty compensation. The robust stability of the proposed controller is analyzed based on Lyapunov function. Simulations demonstrate the effectiveness of the IC strategy for excitation control.

1.
Li
,
C. W.
, and
Feng
,
Y. K.
, 1991,
The Inverse System Method for Multi-Variable Nonlinear Control
,
Tsinghua University
,
Beijing
.
2.
Dai
,
X.
,
Liu
,
J.
,
Feng
,
C.
, and
He
,
D.
, 1998, “
Neural Network -th Order Inverse System Method for the Control of Nonlinear Continuous Systems
,”
IEE Proc.: Control Theory Appl.
1350-2379,
145
, pp.
519
522
.
3.
Plett
,
G. L.
, 2003, “
Adaptive Inverse Control of Linear and Nonlinear Systems Using Dynamic Neural Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
14
, pp.
360
376
.
4.
Li
,
H. X.
, and
Deng
,
H.
, 2006, “
An Approximate Internal Model-Based Neural Control for Unknown Nonlinear Discrete Processes
,”
IEEE Trans. Neural Netw.
1045-9227,
17
, pp.
659
669
.
5.
Vapnik
,
V.
, 1995,
The Nature of Statistical Learning Theory
,
Springer
,
New York
.
6.
Suykens
,
J. A. K.
,
Gestel
,
T. V.
,
Brabanter
,
J. D.
,
Moor
,
B. D.
, and
Vandewalle
,
J.
, 2002,
Least Squares Support Vector Machines
,
World Scientific
,
Singapore
.
7.
Chan
,
W. C.
,
Chan
,
C. W.
, and
Cheung
,
K. C.
, 2001, “
On the Modelling of Nonlinear Dynamic System Using Support Vector Neural Networks
,”
Eng. Applic. Artif. Intell.
0952-1976,
14
, pp.
105
113
.
8.
Suykens
,
J. A. K.
,
Vandewalle
,
J.
, and
Moor
,
B. D.
, 2001, “
Optimal Control by Least Squares Support Machines
,”
Neural Networks
0893-6080,
14
, pp.
23
35
.
9.
Dai
,
X.
,
He
,
D.
,
Zhang
,
T.
, and
Zhang
,
K.
, 2003, “
ANN Generalized Inversion for the Linearization and Decoupling Control of Nonlinear Systems
,”
IEE Proc.: Control Theory Appl.
1350-2379,
150
, pp.
267
277
.
10.
Ge
,
S. S.
,
Zhang
,
J.
, and
Lee
,
T. H.
, 2004, “
Adaptive MNN Control for a Class of Nonaffine NARMAX Systems With Disturbances
,”
Syst. Control Lett.
0167-6911,
53
, pp.
1
12
.
11.
Kumpati
,
S. N.
, and
Snehasis
,
M.
, 1997, “
Adaptive Control Using Neural Networks and Approximate Models
,”
IEEE Trans. Neural Netw.
1045-9227,
8
, pp.
475
485
.
12.
Adetona
,
O.
,
Sathananthan
,
S.
, and
Keel
,
L. H.
, 2004, “
Robust Adaptive Control of Nonaffine Nonlinear Plants With Small Input Signal Changes
,”
IEEE Trans. Neural Netw.
1045-9227,
15
, pp.
408
416
.
13.
Adetona
,
O.
,
Garcia
,
E.
, and
Keel
,
L. H.
, 2000, “
A New Method for the Control of Discrete Nonlinear Dynamic Systems Using Neural Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
11
, pp.
102
112
.
14.
Levin
,
A. U.
, and
Narendra
,
K. S.
, 1996, “
Control of Nonlinear Dynamical Systems Using Neural Networks-Part II: Observability, Identification, and Control
,”
IEEE Trans. Neural Netw.
1045-9227,
7
, pp.
30
42
.
15.
Spooner
,
J. T.
,
Maggiore
,
M.
,
Ordonez
,
R.
, and
Passino
,
K. M.
, 2002,
Stable Adaptive Control and Estimation for Nonlinear Systems
,
Wiley
,
New York
.
16.
Kumar
,
V. G.
,
Harley
,
R. G.
, and
Wunsch
,
D. C.
, 2003, “
Dual Heuristic Programming Excitation Neuro-Control for Generators in a Multimachine Power System
,”
IEEE Trans. Ind. Appl.
0093-9994,
39
, pp.
382
394
.
17.
Fan
,
S.
,
Mao
,
C. X.
, and
Lu
,
J. M.
, 2003, “
Real-Time Excitation Controller Using Neural Networks
,”
Eng. Intell. Syst.
,
11
, pp.
151
156
.
You do not currently have access to this content.