This paper proposes a finite series expansion to approximate general nonlinear dynamics models to arbitrary accuracy. The method produces an approximation of nonlinear dynamics in the form of an aggregate of linear models, weighted by unimodal basis functions, and results in a linear growth bound on the approximation error. Furthermore, this paper demonstrates that the proposed approximation satisfies the modeling assumptions for analysis based on linear matrix inequalities and hence widens the applicability of these techniques to the area of nonlinear control.

1.
Liu
,
R.
,
Saeks
,
R.
, and
Leake
,
R. J.
, 1969, “
On Global Linearization
,”
SIAM-AMS Proc.
0080-5084,
3
, pp.
93
102
.
2.
Takagi
,
T.
, and
Sugeno
,
M.
, 1985, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
15
(
1
), pp.
116
132
.
3.
Johansen
,
T.
, 1994, “
Fuzzy Model Based Control: Stability, Robustness, and Performance Issues
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
2
(
3
), pp.
221
232
.
4.
Wang
,
L. X.
, and
Mendel
,
J. M.
, 1992, “
Fuzzy Basis Functions, Universal Approximators and Orthogonal Least-Squares Learning
,”
IEEE Trans. Neural Netw.
1045-9227,
3
, pp.
807
814
.
5.
Chen
,
S.
,
Cowan
,
C. F. N.
, and
Grant
,
P. M.
, 1991, “
Orthogonal Least Squares Learning Algorithms for Radial Basis Function Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
2
(
2
), pp.
302
309
.
6.
Li
,
C. J.
, and
Huang
,
T.-Y.
, 2000, “
Nonlinear Continuous Dynamic System Identification by Automatic Localized Modeling
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
6
), pp.
354
358
.
7.
Chen
,
S.
,
Billings
,
S. A.
, and
Luo
,
W.
, 1989, “
Orthogonal Least Squares Methods and Their Application to Non-Linear System Identification
,”
Int. J. Control
0020-7179,
50
(
5
), pp.
1873
1896
.
8.
Kerschen
,
G.
,
Lenaerts
,
V.
,
Marchesiello
,
S.
, and
Fasana
,
A.
, 2001, “
A Frequency Domain Versus a Time Domain Identification Technique for Nonlinear Parameters Applied to Wire Rope Isolators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
(
12
), pp.
645
650
.
9.
Leontaritis
,
I. J.
, and
Billings
,
S. A.
, 1985, “
Input-Output Parametric Models for Non-Linear Systems, Part I: Deterministic Non-Linear Systems
,”
Int. J. Control
0020-7179,
41
(
2
), pp.
303
328
.
10.
Leontaritis
,
I. J.
, and
Billings
,
S. A.
, 1985, “
Input-Output Parametric Models for Non-Linear Systems, Part II: Stochastic Non-Linear Systems
,”
Int. J. Control
0020-7179,
41
(
2
), pp.
329
344
.
11.
Desrochers
,
A.
, and
Mohseni
,
S.
, 1984, “
On Determining the Structure of a Non-Linear System
,”
Int. J. Control
0020-7179,
40
(
5
), pp.
923
938
.
12.
Banerjee
,
A.
,
Arkun
,
Y.
,
Ogunnaike
,
B.
, and
Pearson
,
R.
, 1997, “
Estimation of Nonlinear Systems Using Linear Multiple Models
,”
AIChE J.
0001-1541,
43
(
5
), pp.
1204
1226
.
13.
Johansen
,
T.
, and
Foss
,
B. A.
, 1993, “
Constructing NARMAX Models Using ARMAX Models
,”
Int. J. Control
0020-7179,
58
(
5
), pp.
1125
1153
.
14.
Johansen
,
T.
and
Foss
,
B. A.
, 1995, “
Identification of Non-Linear System Structure and Parameters Using Regime Decomposition
,”
Automatica
0005-1098,
31
(
2
), pp.
321
326
.
15.
Kiriakidis
,
K.
, 2003, “
On the Expansion of Nonlinear Models Using Bell-Shaped Basis Functions
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Washington, D.C.
, Nov., pp.
879
884
.
16.
Kiriakidis
,
K.
, 2005, “
Mixed Mathematical and Physical Modeling for Nonlinear Systems
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
, Nov.
17.
Wang
,
H. O.
,
Tanaka
,
K.
, and
Griffin
,
M. F.
, 1996, “
An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
4
(
1
), pp.
14
23
.
18.
Kiriakidis
,
K.
, 1999, “
Non-Linear Control System Design Via Fuzzy Modelling and LMIS
,”
Int. J. Control
0020-7179,
72
(
7
), pp.
676
685
.
19.
Vidyasagar
,
M.
, 1993,
Nonlinear Systems Analysis
,
2nd ed.
,
Prentice-Hall International
,
Englewood Cliffs, NJ
.
20.
Piegat
,
A.
, 2001,
Fuzzy Modeling and Control
,
Physica-Verlag
,
New York
.
21.
Lancaster
,
P.
, and
Tismenetsky
,
M.
, 1985,
The Theory of Matrices
,
2nd ed.
,
Academic
,
San Diego, CA
.
22.
Lakshmanan
,
N. M.
, and
Arkun
,
Y.
, 1999, “
Estimation and Model Predictive Control of Non-Linear Batch Processes Using Linear Parameter Varying Models
,”
Int. J. Control
0020-7179,
72
(
7
), pp.
659
675
.
23.
Cannon
,
R. H.
, 1967,
Dynamics of Physical Systems
,
McGraw-Hill
,
New York
.
24.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
25.
Gahinet
,
P.
,
Nemirovski
,
A.
,
Laub
,
A.
, and
Chilali
,
M.
, 1995,
LMI Control Toolbox
,
The MathWorks
,
Natick, MA
.
26.
Kiriakidis
,
K.
, 2001, “
Robust Stabilization of the Takagi-Sugeno Fuzzy Model Via Bilinear Matrix Inequalities
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
9
(
2
), pp.
269
277
.
27.
Aizerman
,
M. A.
, and
Gantmacher
,
F. R.
, 1964,
Absolute Stability of Regulator Systems
,
Holden-Day
,
San Francisco
.
28.
Johansson
,
M.
, and
Rantzer
,
A.
, 1998, “
Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
4
), pp.
555
559
.
29.
Shamma
,
J.
, and
Cloutier
,
J. R.
, 1993, “
Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformation
,”
J. Guid. Control Dyn.
0731-5090,
16
(
2
), pp.
256
263
.
30.
Apkarian
,
P.
,
Gahinet
,
P.
, and
Becker
,
G.
, 1995, “
Self-Scheduled H∞ Control of Linear Parameter-Varying Systems: A Design Example
,”
Automatica
0005-1098,
31
(
9
), pp.
1251
1261
.
This content is only available via PDF.
You do not currently have access to this content.