Motion control requirements in electronic manufacturing demand both higher speeds and greater precision to accommodate continuously shrinking part/feature sizes and higher densities. However, improving both performance criteria simultaneously is difficult because of resonances that are inherent to the underlying positioning systems. This paper presents an experimental study of a feedforward controller that was designed for a point-to-point motion control system on a modern and state of the art laser processing system for electronics manufacturing. We systematically apply model identification, inverse dynamics control, iterative refinement (to address modeling inaccuracies), and adaptive least mean square to achieve high speed trajectory tracking. The key innovations lie in using the identified model to generate the gradient descent used in the iterative learning control, encoding the result from the learning control in a finite impulse response filter and adapting the finite impulse response coefficients during operation using the least-mean-square update based on position, velocity, and acceleration feedforward signals. Experimental results are provided to show the efficacy of the proposed approach, a variation of which has been implemented on the production machine.

1.
Gu
,
B.
, 2005, “
Ultrafast Laser Processing for Next-Generation Memory Repair
,”
Proc. SPIE
0277-786X,
5714
pp.
37
42
.
2.
Lei
,
W.
, and
Davignon
,
J.
, 2005, “
Solid State UV Laser Technology for Electronic Packaging Applications
,”
Proc. SPIE
0277-786X,
5629
pp.
314
326
.
3.
ACS-Tech80 Inc.
, 2001,
Engineering Handbook
, ACS Tech80,
Maple Grove, MN
, Version 3.
4.
Silverman
,
L. M.
, 1969, “
Inversion of Multivariable Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-14
(
3
), pp.
270
276
.
5.
Moylan
,
P. J.
, 1977, “
Stable Inversion of Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
22
, pp.
74
78
.
6.
Bayo
,
E.
, and
Paden
,
B.
, 1987, “
On Trajectory Generation for Flexible Robots
,”
J. Rob. Syst.
0741-2223,
4
(
2
), pp.
229
235
.
7.
Bayo
,
E.
, and
Moulin
,
H.
, 1989, “
An Efficient Computation of the Inverse Dynamics of Flexible Manipulators in the Time Domain
,”
Proceedings of 1989 IEEE Robotics and Automation Conference
,
Scottsdale, AZ
, pp.
710
715
.
8.
Devasia
,
S.
,
Chen
,
D.
, and
Paden
,
B.
, 1996, “
Nonlinear Inversion-Based Output Tracking
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
7
), pp.
930
942
.
9.
Tomizuka
,
M.
, 1987, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
109
, pp.
65
68
.
10.
Funahashi
,
Y.
,
Yamada
,
M.
, and
Fujiwara
,
S.
, 1997, “
Zero Phase Error Tracking System With Arbitrarily Specified Gain Characteristics
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
260
264
.
11.
Funahashi
,
Y.
,
Yamada
,
M.
, and
Riadh
,
Z.
, 1999, “
Generalized Optimal Zero Phase Error Tracking Controller Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
, pp.
165
169
.
12.
Francis
,
B. A.
, 1987,
A Course in H∞ Optimization Theory
,
Lecture Notes in Control and Information Sciences
,
Springer-Verlag
,
New York
, Vol.
88
.
13.
Doyle
,
J. C.
,
Francis
,
B. A.
, and
Tannenbaum
,
A. R.
, 1992,
Feedback Control Theory
,
Macmillan
,
London
.
14.
Smith
,
O. J. M.
, 1958,
Feedback Control Systems
,
McGraw-Hill Book Company
,
New York
.
15.
Singer
,
N. C.
, and
Seering
,
W. P.
, 1990, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
76
82
.
16.
Tuttle
,
T. D.
, and
Seering
,
W. P.
, 1994, “
A Zero-Placement Technique for Designing Shaped Inputs to Suppress Multiple-Mode Vibration
,”
American Control Conference
,
Baltimore, MD
, pp.
2533
2537
.
17.
Franklink
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
, 1994,
Feedback Control of Dynamic Systems
,
3rd ed.
,
Addison-Wesley
,
Reading, MA
.
18.
Magee
,
D. P.
, and
Book
,
W. J.
, 2000, “
Optimal Arbitrary Time-Delay (OAT) Filter and Method to Minimize Unwanted System Dynamics
,” U.S. Patent No. 6078844.
19.
Weiner
,
D.
, 1997, “
Design Considerations for Optical Scanning
,”
Proc. SPIE
0277-786X,
3131
, pp.
59
64
.
20.
Arimoto
,
S.
, 1985, “
Mathematical Theory of Learning With Applications to Robot Control
,”
Adaptive and Learning Systems: Theory and Applications
,
K. S.
Narendra
, ed.,
Plenum
,
New York
.
21.
Moore
,
K.
, 1999, “
Iterative Learning Control: An Expository Overview
,”
Applied and Computational Controls, Signal Processing, and Circuits
,
1
(
1
), pp.
425
488
.
22.
Yamakita
,
M.
, and
Furuta
,
K.
, 1991, “
Iterative Generation of Virtual Reference for a Manipulator
,”
Robotica
0263-5747,
9
, pp.
71
80
.
23.
Gorinevsky
,
D. M.
, 1992, “
Direct Learning of Feedforward Control for Manipulator Path Tracking
,”
Proceedings of the 1992 IEEE International Symposium on Intelligent Control
,
Glasgow
,
UK
, pp.
42
47
.
24.
Cheng
,
W.
, and
Wen
,
J. T.
, 1993, “
A Class of Learning Controllers With Application to Tracking Control of a Flexible Beam
,”
Proceedings, 1993 IEEE Conference on Robotics and Automation
,
Atlanta, GA
, pp.
411
416
.
25.
Kinosita
,
K.
,
Sogo
,
T.
, and
Adachi
,
N.
, 2002, “
Iterative Learning Control Using Adjoint Systems and Stable Inversion
,”
Asian Journal of Control
,
4
(
1
), pp.
60
67
.
26.
Avrachenkov
,
K. E.
, 1998, “
Iterative Learning Control Based on Quasi-Newton Methods
,”
Conference on Decision and Control
,
Tampa, FL
, pp.
170
174
.
27.
Ghosh
,
J.
, and
Paden
,
B.
, 2002, “
A Pseudoinverse-Based Iterative Learning Control
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
5
), pp.
831
837
.
28.
Davis
,
L.
,
Hyland
,
D.
,
Yen
,
G.
, and
Das
,
A.
, 1999, “
Adaptive Neural Control for Space Structure Vibration Suppression
,”
Smart Mater. Struct.
0964-1726,
8
, pp.
753
766
.
29.
Ma
,
K.
, and
Ghasemi-Nejhad
,
M. N.
, 2004, “
Frequency-Weighted Adaptive Control for Simultaneous Precision Positioning and Vibration Suppression of Smart Structures
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
1143
1154
.
30.
Fei
,
J.
, and
Song
,
G.
, 2004, “
Adaptive Feedforward Model Reference Control Scheme for Vibration Suppression
,”
Proceedings of the 2004 IEEE International Symposium on Intelligent Control
,
Taipei, Taiwan
, pp.
357
362
.
31.
McKelvey
,
T.
,
Akcay
,
H.
, and
Ljung
,
L.
, 1996, “
Subspace-Based Multivariable System Identification From Frequency Response Data
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
7
), pp.
960
979
.
32.
Van Overschee
,
P.
, and
De Moor
,
B.
, 1996, “
Continuous-Time Frequency Domain Subspace System Identification
,”
Signal Process.
0165-1684, Special Issue on Subspace Methods, Part: System Identification,
52
, pp.
179
194
.
33.
Bayard
,
D.
, 1992, “
Statistical Plant Set Estimation Using Schroeder-Phased Multisinusoidal Input Design
,”
Proceedings 1992 American Control Conference
,
Chicago, IL
, pp.
2988
2995
.
34.
Markusson
,
O.
,
Hjalmarsson
,
H.
, and
Norrlof
,
M.
, 2001, “
Iterative Learning Control of Nonlinear Nonminimum Phase Systems and Its Application to System and Model Inversion
,”
Proceedings of IEEE Conference on Decision and Control
, pp.
4481
4482
.
35.
Oppenheim
,
A. V.
,
Schafer
,
R. W.
, and
Buck
,
J. R.
, 1999,
Discrete-Time Signal Processing
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Ye
,
Y.
, and
Wang
,
D.
, 2005, “
Zero Phase Learning Control Using Reversed Time Input Runs
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
133
139
.
37.
Haykin
,
S.
, 1996,
Adaptive Filter Theory
,
3rd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
38.
Goodwin
,
G. C.
, and
Sin
,
K. S.
, 1984,
Adaptive Filtering Prediction and Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.