We consider an autonomous vehicle-target assignment problem where a group of vehicles are expected to optimally assign themselves to a set of targets. We introduce a game-theoretical formulation of the problem in which the vehicles are viewed as self-interested decision makers. Thus, we seek the optimization of a global utility function through autonomous vehicles that are capable of making individually rational decisions to optimize their own utility functions. The first important aspect of the problem is to choose the utility functions of the vehicles in such a way that the objectives of the vehicles are localized to each vehicle yet aligned with a global utility function. The second important aspect of the problem is to equip the vehicles with an appropriate negotiation mechanism by which each vehicle pursues the optimization of its own utility function. We present several design procedures and accompanying caveats for vehicle utility design. We present two new negotiation mechanisms, namely, “generalized regret monitoring with fading memory and inertia” and “selective spatial adaptive play,” and provide accompanying proofs of their convergence. Finally, we present simulations that illustrate how vehicle negotiations can consistently lead to near-optimal assignments provided that the utilities of the vehicles are designed appropriately.

1.
Olfati-Saber
,
R.
, 2006, “
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
,”
IEEE Trans. Autom. Control
0018-9286,
51
, pp.
401
420
.
2.
Murphey
,
R. A.
, 1999, “
Target-Based Weapon Target Assignment Problems
,”
Nonlinear Assignment Problems: Algorithms and Applications
,
Pardalos
,
P. M.
, and
Pitsoulis
,
L. S.
, ed., pp.
39
53
,
Kluwer
, Dordrecht.
3.
Ahuja
,
R. K.
,
Kumar
,
A.
,
Jha
,
K.
, and
Orlin
,
J. B.
, 2003, “
Exact and Heuristic Methods for the Weapon-Target Assignment Problem
,” http://ssrn.com/abstract=489802http://ssrn.com/abstract=489802
4.
Fudenberg
,
D.
, and
Tirole
,
J.
, 1991,
Game Theory
,
MIT Press
, Cambridge, MA.
5.
Basar
,
T.
, and
Olsder
,
G. J.
, 1999,
Dynamic Noncooperative Game Theory
,
SIAM
, Philadelphia.
6.
Wolpert
,
D. H.
, and
Tumor
,
K.
, 2001, “
Optimal Payoff Functions for Members of Collectives
,”
Adv. Complex Syst.
0219-5259,
4
(
2&3
), pp.
265
279
.
7.
Monderer
,
D.
, and
Shapley
,
L. S.
, 1996, “
Potential Games
,”
Games Econ. Behav.
0899-8256,
14
, pp.
124
143
.
8.
Fudenberg
,
D.
, and
Levine
,
D. K.
, 1998,
The Theory of Learning in Games
,
MIT Press
, Cambridge, MA.
9.
Young
,
H. P.
, 1998,
Individual Strategy and Social Structure: An Evolutionary Theory of Institutions
,
Princeton University Press
, Princeton, NJ.
10.
Wolpert
,
D.
, and
Tumor
,
K.
, 2004, “
A Survey of Collectives
,” in
Collectives and the Design of Complex Systems
,
K.
Tumer
and
D.
Wolpert
, eds.,
Springer-Verlag
,
New York, NY
, p.
142
.
11.
Miettinen
,
K. M.
, 1998,
Nonlinear Multiobjective Optimization
,
Kluwer
, Dordrecht.
12.
Rosenthal
,
R. W.
, 1973, “
A Class of Games Possessing Pure-Strategy Nash Equilibria
,”
Int. J. Game Theory
0020-7276,
2
, pp.
65
67
.
13.
Mas-Colell
,
A.
,
Whinston
,
M. D.
, and
Green
,
J. R.
, 1995,
Microeconomic Theory
,
Oxford University Press
, London.
14.
Benaim
,
M.
, and
Hirsch
,
M. W.
, 1999, “
Mixed Equilibria and Dynamical Systems Arising From Fictitious Play in Perturbed Games
,”
Games Econ. Behav.
0899-8256,
29
, pp.
36
72
.
15.
Brown
,
G. W.
, 1951, “
Iterative Solutions of Games by Fictitious Play
,”
Activity Analysis of Production and Allocation
,
Koopmans
,
T. C.
, ed.,
Wiley
, New York, pp.
374
376
.
16.
Monderer
,
D.
, and
Shapley
,
L. S.
, 1996, “
Fictitious Play Property for Games With Identical Interests
,”
J. Econ. Theory
0022-0531,
68
, pp.
258
265
.
17.
Curtis
,
J. W.
, and
Murphey
,
R.
, 2003, “
Simultaneous Area Search and Task Assignment for a Team of Cooperative Agents
,”
AIAA Guidance, Navigation, and Control Conference and Exhibit
, August, Austin, Texas, AIAA, pp.
2003
5584
.
18.
Hofbauer
,
J.
, 1995, “
Stability for the Best Response Dynamics
,” University of Vienna, Vienna, Austria, http://homepage.univie.ac.at/josef.hofbauer/br.pshttp://homepage.univie.ac.at/josef.hofbauer/br.ps
19.
Krishna
,
V.
, and
Sjöström
,
T.
, 1998, “
On the Convergence of Fictitious Play
,”
Math. Op. Res.
0364-765X,
23
, pp.
479
511
.
20.
Hofbauer
,
J.
, and
Sandholm
,
B.
, 2002, “
On the Global Convergence of Stochastic Fictitious Play
,”
Econometrica
0012-9682,
70
, pp.
2265
2294
.
21.
Lambert
,
T. J.
, III
,
Epelman
,
M. A.
, and
Smith
,
R. L.
, 2005, “
A Fictitious Play Approach to Large-Scale Optimization
,”
Oper. Res.
0030-364X,
53
(
3
), pp.
477
489
.
22.
Marden
,
J. R.
,
Arslan
,
G.
, and
Shamma
,
J. S.
, 2005, “
Joint Strategy Fictitious Play with Inertia for Potential Games
,”
Proc. of 44th IEEE Conference on Decision and Control
, Dec., pp.
6692
6697
.
23.
Fudenberg
,
D.
, and
Levine
,
D.
, 1998, “
Learning in Games
,”
European Economic Review
,
42
, pp.
631
639
.
24.
Fudenberg
,
D.
, and
Levine
,
D. K.
, 1995, “
Consistency and Cautious Fictitious Play
,”
J. Econ. Dyn. Control
0165-1889,
19
, pp.
1065
1089
.
25.
Sutton
,
R. S.
, and
Barto
,
A. G.
, 1998,
Reinforcement Learning: An Introduction
,
MIT Press
, Cambridge, MA.
26.
Bertsekas
,
D. P.
, and
Tsitsiklis
,
J. N.
, 1996,
Neuro-Dynamic Programming
,
Athena Scientific
, Belmont, MA.
27.
Leslie
,
D.
, and
Collins
,
E.
, 2003, “
Convergent Multiple-Ttimescales Reinforcement Learning Algorithms in Normal form Games
,”
Ann. Appl. Probab.
1050-5164,
13
, pp.
1231
1251
.
28.
Leslie
,
D.
, and
Collins
,
E.
, 2005, “
Individual Q-Learning in Normal Form Games
,”
SIAM J. Control Optim.
0363-0129,
44
(
2
). pp.
495
514
.
29.
Leslie
,
D. S.
, and
Collins
,
E. J.
, 2006, “
Generalised Weakened Fictitious Play
,” Games and Economic Behavior, Vol.
56
, issue
2
, pages
285
298
.
30.
Hart
,
S.
, and
Mas-Colell
,
A.
, 2000, “
A Simple Adaptive Procedure Leading to Correlated Equilibrium
,”
Econometrica
0012-9682,
68
(
5
), pp.
1127
1150
.
31.
Hart
,
S.
, and
Mas-Colell
,
A.
, 2001, “
A General Class of Adaptative Strategies
,”
J. Econ. Theory
0022-0531,
98
, pp.
26
54
.
32.
Hart
,
S.
, and
Mas-Colell
,
A.
, 2003, “
Regret Based Continuous-Time Dynamics
,”
Games Econ. Behav.
0899-8256,
45
, pp.
375
394
.
33.
Marden
,
J. R.
,
Arslan
,
G.
, and
Shamma
,
J. S.
, 2007, “
Regret Based Dynamics: Convergence in Weakly Acyclic Games
,”
Proc. of 6th International Joint Conference on Autonomous Agents and Multi-Agent Systems
,
ACM Press
,
New York
, NY, pp.
194
201
.
34.
Bertsekas
,
D.
, and
Gallager
,
R.
, 1992,
Data Networks
,
2nd ed.
,
Prentice-Hall
, Englewood Cliffs., NJ.
35.
Hofbauer
,
J.
, and
Hopkins
,
E.
, 2005, “
Learning in Perturbed Asymmetric Games
,” Games and Economic Behavior, Vol.
52
, pp.
133
152
.
36.
Wolpert
,
D. H.
, 2004, “
Information Theory—The Bridge Connecting Bounded Rational Game Theory and Statistical Physics
,” http://arxiv.org/PS-cache/cond-mat/pdf/0402/0402508.pdfhttp://arxiv.org/PS-cache/cond-mat/pdf/0402/0402508.pdf
37.
Aarts
,
E.
, and
Korst
,
J.
, 1989,
Simulated Annealing and Boltzman Machines
,
Wiley
, New York.
38.
van Laarhoven
,
P. J. M.
, and
Aarts
,
E. H. L.
, 1987,
Simulated Annealing: Theory and Applications
,
Reidel
, Dordrecht.
39.
Raghavan
,
T. E. S.
, and
Fillar
,
J. A.
, 1991, “Algorithms for Stochastic Games—A Survey,” Methods Models Op. Res., 35, pp. 437–472.
40.
Vrieze
,
O. J.
, and
Tijs
,
S. H.
, 1980, “
Fictitious Play Applied to Sequence of Games and Discounted Stochastic Games
,”
Int. J. Game Theory
0020-7276,
11
, pp.
71
85
.
You do not currently have access to this content.