The stabilization problem is considered in this study for a neural-network (NN) linearly interconnected system that consists of a number of NN models. First, a linear difference inclusion (LDI) state-space representation is established for the dynamics of each NN model. Then, based on the LDI state-space representation, a stability criterion in terms of Lyapunov’s direct method is derived to guarantee the asymptotic stability of closed-loop NN linearly interconnected systems. Subsequently, according to this criterion and the decentralized control scheme, a set of Takagi-Sugeno (T-S) fuzzy controllers is synthesized to stabilize the NN linearly interconnected system. Finally, a numerical example with simulations is given to demonstrate the concepts discussed throughout this paper.

1.
Tzafestas
,
S. G.
, and
Watanabe
,
K.
, 1992,
Stochastic Large-Scale Engineering Systems
,
Marcel Dekker
,
New York
.
2.
Bennett
,
W. H.
, and
Baras
,
J. S.
, 1982, “
Design Methods for Decentralized Control of Large-Scale Systems Based on Block Diagonal Dominance
,”
IEEE Control Syst. Mag.
0272-1708,
2
(
4
), pp.
50
50
.
3.
Ohta
,
Y.
,
Šiljak
,
D. D.
, and
Matsumoto
,
T.
, 1986, “
Decentralized Control Using Quasi-Block Diagonal Dominance of Transfer Function Matrices
,”
IEEE Trans. Autom. Control
0018-9286,
31
, pp.
420
430
.
4.
Edmunds
,
J. M.
, 1998, “
Input and Output Scaling and Reordering for Diagonal Dominance and Block Diagonal Dominance
,”
IEE Proc.: Control Theory Appl.
1350-2379,
145
, pp.
523
530
.
5.
Labibi
,
B.
,
Lohmann
,
B.
,
Sedigh
,
A. K.
, and
Maralani
,
P. J.
, 2003, “
Decentralized Stabilization of Large-Scale Systems Via State-Feedback and Using Descriptor Systems
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
33
, pp.
771
776
.
6.
Wang
,
W.-J.
, and
Luoh
,
L.
, 2004, “
Stability and Stabilization of Fuzzy Large-Scale Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
12
, pp.
309
315
.
7.
Tobi
,
T.
et al.
, 1991, “
A Practical Application of Fuzzy Control for an Air Conditioning System
,”
Int. J. Approx. Reason.
0888-613X,
5
, pp.
331
348
.
8.
Eaton
,
J. W.
, and
Rawlings
,
J. B.
, 1992, “
Model-Predictive Control of Chemical Processes
,”
Chem. Eng. Sci.
0009-2509,
47
, pp.
705
720
.
9.
Wang
,
S.-Y.
,
Hong
,
C.-M.
,
Liu
,
C.-C.
, and
Yang
,
W.-T.
, 1996, “
Design of a Static Reactive Power Compensator Using Fuzzy Sliding Mode Control
,”
Int. J. Control
0020-7179,
63
, pp.
393
413
.
10.
Jin
,
Y.
, 1998, “
Decentralized Adaptive Fuzzy Control of Robot Manipulators
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
28
, pp.
47
57
.
11.
Aldawod
,
M.
,
Samali
,
B.
,
Naghdy
,
F.
, and
Kwok
,
K. C. S.
, 2001, “
Active Control of Along Wind Response of Tall Building Using a Fuzzy Controller
,”
Polym. Polym. Compos.
0967-3911,
23
, pp.
1512
1522
.
12.
Hwang
,
C.-L.
, and
Kuo
,
C.-Y.
, 2001, “
A Stable Adaptive Fuzzy Sliding-Mode Control for Affine Nonlinear Systems with Application to Four-Bar Linkage Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
9
, pp.
238
251
.
13.
Mesina
,
O. S.
, and
Langari
,
R.
, 2001, “
A Neuro-Fuzzy System for Tool Condition Monitoring in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
312
318
.
14.
Tanaka
,
K.
, and
Sugeno
,
M.
, 1992, “
Stability Analysis and Design of Fuzzy Control System
,”
Fuzzy Sets Syst.
0165-0114,
45
, pp.
135
156
.
15.
Wang
,
H. O.
,
Tanaka
,
K.
, and
Griffin
,
M. F.
, 1996, “
An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
4
, pp.
14
23
.
16.
Feng
,
G.
,
Cao
,
S. G.
,
Rees
,
N. W.
, and
Chak
,
C. K.
, 1997, “
Design of Fuzzy Control Systems with Guaranteed Stability
,”
Fuzzy Sets Syst.
0165-0114,
85
, pp.
1
10
.
17.
Ma
,
X.-J.
,
Sun
,
Z.-O.
, and
He
,
Y.-Y.
, 1998, “
Analysis and Design of Fuzzy Controller and Fuzzy Observer
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
6
, pp.
41
51
.
18.
Wang
,
W.-J.
, and
Lin
,
H.-R.
, 1999, “
Fuzzy Control Design for the Trajectory Tracking on Uncertain Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
7
, pp.
53
62
.
19.
Chen
,
B.-S.
,
Tseng
,
C.-S.
, and
Uang
,
H. J.
, 1999, “
Robustness Design of Nonlinear Dynamic Systems Via Fuzzy Linear Control
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
7
, pp.
571
585
.
20.
Chen
,
B.-S.
,
Lee
,
B.-K.
, and
Guo
,
L.-B.
, 2003, “
Optimal Tracking Design for Stochastic Fuzzy Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
11
, pp.
1
19
.
21.
Cao
,
S. G.
,
Rees
,
N. W.
, and
Feng
,
G.
, 1996, “
Quadratic Stability Analysis and Design of Continuous-Time Fuzzy Control Systems
,”
Int. J. Syst. Sci.
0020-7721,
27
, pp.
193
203
.
22.
Cao
,
S. G.
,
Rees
,
N. W.
, and
Feng
,
G.
, 1996, “
Stability Analysis and Design for a Class of Continous-Time Fuzzy Control Systems
,”
Int. J. Control
0020-7179,
64
, pp.
1069
1087
.
23.
Cao
,
S. G.
,
Rees
,
N. W.
, and
Feng
,
G.
, 1998, “
Lyapunov-Like Stability Theorems for Continuous-Time Fuzzy Control Systems
,”
Int. J. Control
0020-7179,
69
, pp.
49
64
.
24.
Yen
,
J.
, and
Langari
,
R.
, 1998,
Fuzzy Logic: Intelligence, Control, and Information
,
Prentice Hall
,
Englewood Cliffs, NJ
.
25.
Akar
,
M.
, and
Özgüner
,
Ü.
, 1999, “
Decentralized Parallel Distributed Compensator Design for Takagi-Sugeno Fuzzy Systems
,”
Proceedings of the IEEE Conference on Decision and Control
, Vol.
5
, pp.
4834
4839
.
26.
Akar
,
M.
, and
Özgüner
,
Ü.
, 1999, “
Stability and Stabilization of Takagi-Sugeno Fuzzy Systems
,”
Proceedings of the IEEE Conference on Decision and Control
, Vol.
5
, pp.
4840
4845
.
27.
Akar
,
M.
, and
Özgüner
,
Ü.
, 2000, “
Decentralized Techniques for the Analysis and Control of Takagi-Sugeno Fuzzy Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
3
, pp.
691
704
.
28.
Hong
,
S.-K.
, and
Langari
,
R.
, 2000, “
An LMI-Based H∞ Fuzzy Control System Design with TS Framework
,”
Inf. Sci. (N.Y.)
0020-0255,
123
, pp.
163
179
.
29.
Tanaka
,
K.
, 1995, “
Stability and Stabilization of Fuzzy-Neural-Linear Control Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
3
, pp.
438
447
.
30.
Tanaka
,
K.
, 1996, “
An Approach to Stability Criteria of Neural-Network Control Systems
,”
IEEE Trans. Neural Netw.
1045-9227,
7
, pp.
629
643
.
31.
Limanond
,
S.
, and
Si
,
J.
, 1998, “
Neural-Network-Based Control Design: An LMI Approach
,”
IEEE Trans. Neural Netw.
1045-9227,
9
, pp.
1422
1429
.
32.
Si
,
J.
, and
Michel
,
A. N.
, 1994, “
Analysis and Synthesis of a Class of Discrete-Time Neural Networks with Nonlinear Interconnections
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
41
, pp.
52
58
.
33.
Si
,
J.
, and
Michel
,
A. N.
, 1995, “
Analysis and Synthesis of a Class of Discrete-Time Neural Networks with Multilevel Threshold Neurons
,”
IEEE Trans. Neural Netw.
1045-9227,
6
, pp.
105
116
.
34.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
35.
Wang
,
W.-J.
, and
Cheng
,
C.-F.
, 1992, “
Stabilizing Controller and Observer Synthesis for Uncertain Large-Scale Systems by the Riccati Equation Approach
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
139
, pp.
72
78
.
This content is only available via PDF.
You do not currently have access to this content.