We propose the synthesis of robust fractional-order controllers using the principles of quantitative feedback theory (QFT). The resulting controllers are called as fractional-order QFT controllers. To demonstrate the synthesis method, we synthesize proportional-integral-derivative (PID) and more general types of fractional-order QFT controllers for a fractional-order plant, a DC motor, and a multistage flash desalination process.
Issue Section:
Technical Briefs
1.
Podlubny
, I.
, 1999, Fractional-Order Systems and PIλDμ-Controllers
,” IEEE Trans. Autom. Control
0018-9286, 44
(1
), pp. 208
–214
.2.
Podlubny
, I.
, 1999, Fractional Differential Equations
, Academic Press
, New York.3.
Wang
, J. C.
, 1987, “Realization of Generalized Warburg Impedance With RC Ladder and Transmission Lines
,” J. Electrochem. Soc.
0013-4651, 134
(8
), pp. 1915
–1940
.4.
5.
Mandelbrot
, B.
, 1967, “Some Noises With 1/f Spectrum: A Bridge Between Direct Current and White Noise
,” IEEE Trans. Inf. Theory
0018-9448, IT-13
(2
), pp. 289
–298
.6.
Onaral
, B.
, and Schwan
, H. P.
, 1982, “Linear and Nonlinear Properties of Platinum Electrode Polarization, Part I: Frequency Dependence at Very Low Frequencies
,” Med. Biol. Eng. Comput.
0140-0118, 20
, pp. 299
–306
.7.
Le Mehauté
, A.
, 1991, Fractal Geometries
, CRC Press
, Boca Raton.8.
Bode
, H. W.
, 1945, Network Analysis and Feedback Design
, Van Nostrand
, New York.9.
Manabe
, S.
, 1961, “The Non-Integer Integral and Its Application to Control Systems
,” ETJ Jpn.
, 3-4
(6
), pp. 83
–87
.10.
Manabe
, S.
, 2003, “Early Development of Fractional Order Control
,” Proc. of DETC’03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, ASME
, New York, ASME Paper No. DETC2003/VIB-48370, Chicago, Sept. 2–6.11.
Åström
, K. J.
, 1999, “Model Uncertainty and Robust Control
,” Department of Automatic Control, Lund University, Lund, Sweden, http://www.control.lth.se/~kja/modeluncertainty.pdfhttp://www.control.lth.se/~kja/modeluncertainty.pdf.12.
Oustaloup
, A.
, Moreau
, X.
, and Nouillant
, M.
, 1996, “The CRONE Suspension
,” Control Eng. Pract.
0967-0661, 4
(8
), pp. 1101
–1108
.13.
Oustaloup
, A.
, Mathieu
, B.
, and Lanusse
, P.
, 1995, “The CRONE Control of Resonant Plants: Application to a Flexible Transmission
,” Eur. J. Control
0947-3580, 1
(2
), pp. 113
–121
.14.
Lanusse
, P.
, Pommier
, V.
, and Oustaloup
, A.
, 2000, “Fractional Control System Design for a Hydraulic Actuator
,” Proc. of 1st IFAC Conference on Mechatronics Systems, Mechatronic 2000
, Darmstadt
, Sept.15.
Lurie
, B. J.
, 1994, “Three-Parameter Tunable Tilt-Integral-Derivative (TID) Controller
,” U.S. Patent No. US5371670.16.
Oustaloup
, A.
, and Mathieu
, B.
, 1999, La Commande CRONE: Du Scalaire Aumultivariable
, Hermes
, Paris.17.
Podlubny
, I.
, Petrás
, I.
, Vinagare
, B. M.
, O’Leary
, P.
, and Dorcak
, L.
, 2002, “Analogue Realization of Fractional-Order Controllers
,” Nonlinear Dyn.
0924-090X, 29
, pp. 281
–296
.18.
Vinagre
, B. M.
, Petras
, I.
, M.
P.
, and Dorcak
, L.
, 2001, “Two Digital Realization of Fractional Controllers: Application to Temperature Control of a Solid
,” Proc. of European Control Conference
, Porto, Portugal, Sept., Laoisier
, Cachan, pp. 1764
–1767
.19.
Vinagre
, B. M.
, Podlubny
, I.
, Hernandez
, A.
, and Feliu
, V.
, 2000, “On Realization of Fractional-Order Controllers
,” Proc. of Conference Internationale Fracophone d’Automatique
, Lille
, France, Vol. 7
, pp. 945
–950
.20.
Valério
, D.
, and Sá da Costa
, J.
, 2005, “Time-Domain Implementation of Fractional Order Controllers
,” IEE Proc.: Control Theory Appl.
1350-2379, 152
, pp. 539
–552
.21.
Horowitz
, I. M.
, 1993, Quantitative Feedback Design Theory (QFT)
, QFT Publications
, Boulder.22.
Hansen
, E.
, 1992, Global Optimization Using Interval Analysis
, Marcel Dekker
, New York.23.
Ratschek
, H.
, and Rokne
, J.
, 1988, New Computer Methods for Global Optimization
, Wiley
, New York.24.
Ballance
, D. J.
, and Gawthrop
, P. J.
, 1991, “Control Systems Design Via a QFT Approach
,” Proc. of IEE Conference Control 91
, Edinburgh, IEE Press
, London, UK, Vol. 1
, pp. 476
–481
.25.
Bryant
, G.
, and Halikias
, G.
, 1995, “Optimal Loop-Shaping for Systems With Large Parameter Uncertainty via Linear Programming
,” Int. J. Control
0020-7179, 62
(3
), pp. 557
–568
.26.
Chait
, Y.
, Chen
, Q.
, and Hollot
, C. V.
, 1999, “Automatic Loop-Shaping of QFT Controllers Via Linear Programming
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 121
, pp. 351
–357
.27.
Gera
, A.
, and Horowitz
, I. M.
, 1980. “Optimization of the Loop Transfer Function
,” Int. J. Control
0020-7179, 31
, pp. 389
–398
.28.
Thompson
, D. F.
, and Nwokah
, O. D. I.
, 1994, “Analytical Loop Shaping Methods in Quantitative Feedback Theory
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 116
(2
), pp. 169
–177
.29.
Chen
, W.
, and Ballance
, D. J.
, 1997, “Stability Analysis On the Nichols Chart and Its Application in QFT
,” Technical Report No. CSC-98013, Center for Systems and Control, Department of Mechanical Engineering, University of Glasgow.30.
Nataraj
, P. S. V.
, and Tharewal
, S.
, “An Interval Analysis Algorithm for Automated Controller Synthesis in QFT Designs
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, to be published.31.
Borghesani
, C.
, Chait
, Y.
, and Yaniv
, O.
, 1995, The QFT Frequency Domain Design Toolbox for Use With MATLAB®
, The MathWorks, Inc.
, MA.32.
Chen
, W.
, Ballance
, D. J.
, and Li
, Y.
, 1998, “Automatic Loop-Shaping in QFT Using Genetic Algorithms
,” Proc. of 3rd Asia-Pacific Conference on Control and Measurement
, pp. 63
–67
.33.
Ismail
, A.
, 2001, “Robust QFT-Based TBT Control of MSF desalination plants
,” Desalination
0011-9164, 133
, pp. 105
–121
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.