This paper addresses control of structural vibrations using semi-active actuators that are capable of manipulating stiffness and∕or producing variable stiffness. Usually vibration suppression is achieved using damping devices rather than stiffness ones. However, stiffness devices can produce large forces and have significant advantages for shock isolation purposes. In this work we use a passivity approach to establish the requirements for the control law for a structure equipped with semi-active stiffness devices. We also solve an optimal control problem that demonstrates that our passive, resetting feedback control law approximates the optimal control. Simulation and experimental results are presented in support of the proposed approach.
Issue Section:
Technical Papers
1.
Kobori
, T.
, and Kamagata
, S.
, 1991, “Dynamic Intelligent Buildings: Active Seismic Response Control
,” Intelligent Structures; Monitoring and Control
, Y. K.
Wen
, ed., Elsevier
, New York
, pp. 279
–282
.2.
Onodo
, J.
, and Minesugi
, K.
, 1996, “Alternative Control Logic for Type-II Variable Stiffness System
,” AIAA J.
0001-1452, 34
(1
), pp. 207
–209
.3.
Patten
, W. N.
, and Sack
, R. L.
, “Semiactive Control of Civil Engineering Structures
,” Proc. of 1994 ACC
, Baltimore
, Omnipress
, Madison, WI
, pp. 1078
–1082
.4.
Bobrow
, J. E.
, Jabbari
, F.
, and Thai
, K.
, 2000, “A New Approach to Shock Isolation and Vibration Suppression Using a Resetable Actuator
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 122
, pp. 570
–573
.5.
Gavin
, H. P.
, Hanson
, R. D.
, and Filisko
, F. E.
, 1996, “Electro-Rheological Damper: 1. Analysis and Design, 2, Testing and Modeling
,” ASME J. Appl. Mech.
0021-8936, 63
(3
), pp. 669
–682
.6.
Gavin
, H. P.
, 1997, “The Effect of Particle Concentration Inhomogeneities on the Steady Flow of Electro- and Magneto-Rheological Materials
,” J. Non-Newtonian Fluid Mech.
0377-0257, 71
(3
), pp. 165
–182
.7.
Wang
, X. J.
, and Gordaninejad
, F.
, 1999, “Flow Analysis of Field-Controllable, Electro- and Magneto-Rheological Fluids Using Herschel-Bulkley Model
,” J. Intell. Mater. Syst. Struct.
1045-389X, 10
(8
), pp. 601
–608
.8.
Dyke
, S. J.
, Spencer
, B. F.
, Sain
, M. K.
, and Carlson
, J. D.
, “Seismic Response Reduction Using Magneto-Rheological Dampers
,” Proc. of the 1996 IFAC 13th Congress
, San Francisco
, Elsevier
, New York
, pp. 145
–150
.9.
Utkin
, V. I.
, 1977, “Variable Structure Systems With Sliding Modes
,” IEEE Trans. Autom. Control
0018-9286, 22
(2
), pp. 212
–222
.10.
Nemir
, D.
, Lin
, Y.
, and Osegueda
, R.
, 1994, “Semi-Active Motion Control Using Variable Stiffness
,” Adv. Environ. Res.
1093-0191, 12
(4
), pp. 1291
–1306
.11.
Bobrow
, J. E.
, Jabbari
, F.
, and Thai
, K.
, 1995, “An Active Element and Control Law for Vibration Suppression
,” Smart Mater. Struct.
0964-1726, pp. 264
–269
.12.
Bobrow
, J. E.
, “High Performance Damping With a Semi-Active Spring
,” 1997 ASME Design Technical Conferences
, Sacramento, Sept., ASME Paper No. DETC97∕VIB-3826.13.
Ramaratnam
, A.
, Jalili
, N.
, and Dawson
, D. M.
, 2004, “Semi-Active Vibration Control Using Piezoelectric Based Switched Stiffness
,” ACC04, Boston, June, pp. 5461
–5466
.14.
Yang
, J. N.
, Li
, Z.
, and Wu
, J. C.
, 1996, “Control of Seismic Excited-Buildings Using Active Variable Stiffness System
,” Eng. Struct.
0141-0296, 18
(8
), pp. 589
–596
.15.
Leitmann
, G.
, and Reithmeirer
, E.
, 1993, “Semiactive Control of a Vibrating System by Means of Electro-Rheological Fluids
,” Dyn. Control
0925-4668, 3
(1
), pp. 7
–34
.16.
Jabbari
, F.
, and Bobrow
, J. E.
, 2002, “Vibration Suppression with a Resetable Device
,” J. Eng. Mech.
0733-9399, 128
(9
), pp. 916
–924
.17.
Leavitt
, J. L.
, Bobrow
, J. E.
, Jabbari
, F.
, and Yang
, J. N.
, 2005, “Application of a High-Pressure Gas Semi-Active Resetable Damper to the Benchmark Smart Base-Isolated Buildings
,” Journal of Structural Control and Health Monitoring
, Vol. 13, pp. 748
–757
.18.
Leavitt
, J.
, “Motion Sensing and Control of a Pneumatically Actuated Hopping Robot and a Semi-Active Vibration Damper
,” Ph.D. dissertation, University of California, Irvine, October 2006.19.
Yang
, J. N.
, Bobrow
, J. E.
, Jabbari
, F.
, Leavitt
, J. L.
, Cheng
, C. P.
, and Lin
, P. Y.
, “Full Scale Experimental Verification of Resetable Semi-Active Stiffness Dampers
,” Journal of Earthquake Engineering and Structural Dynamics (submitted).20.
McDonell
, B.
, and Bobrow
, J.
, 1998, “Modeling, Identification, and Control of a Pneumatically Actuated, Force Controllable Robot
,” IEEE Trans. Rob. Autom.
1042-296X, 14
, pp. 732
–742
.21.
Dunn
, J. C.
, and Bertsekas
, D. P.
, 1989, “Efficient Dynamic Programming Implementations of Newton’s Method for Unconstrained Optimal Control Problems
,” J. Optim. Theory Appl.
0022-3239, 63
(1
), pp. 23
–38
.22.
Athans
, M.
, and Falb
, P. L.
, 1966, Optimal Control; An Introduction to the Theory and Its Applications
, Mcgraw-Hill
, New York
.23.
Khalil
, H. K.
, 1996, Nonlinear Systems
, 2nd ed., Ptrentice-Hall
, Englewood Cliffs, NJ
.24.
Beker
, O.
, Hollot
, C. V.
, Chait
, Y.
, and Han
, H.
, 2004, “Fundamental Properties of Reset Control Systems
,” Automatica
0005-1098, 40
, pp. 905
–916
.25.
Inaudi
, J. A.
, Leitmann
, G.
, and Kelly
, J. M.
, 1994, “Single Degree of Freedom Nonlinear Homogeneous Systems
,” J. Eng. Mech.
0733-9399, 120
(7
), pp. 1543
–1562
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.