This paper presents a new structure of Takagi-Sugeno (T-S) fuzzy controllers, which is called T-S fuzzy region controller or TSFRC for short. The fuzzy region concept is used to partition the plant rules into several fuzzy regions so that only one region is fired at the instant of each input vector being coming. Because each fuzzy region contains several plant rules, the fuzzy region can be regarded as a polytopic uncertain model. Therefore, robust control techniques would be essential for designing the feedback gains of each fuzzy region. To improve the speed of response, the decay rate constraint is imposed when deriving the stability conditions with Lyapunov stability criterion. To design TSFRC with the linear matrix inequality (LMI) solver, all stability conditions are represented in terms of LMIs. Finally, a two-link robot system is used to prove the feasibility and validity of the proposed method.

1.
Park
,
Y.
,
Tahk
,
M. J.
, and
Park
,
J.
, 2001, “
Optimal Stabilization of Takagi-Sugeno Fuzzy-Systems With Application to Spacecraft Control
,”
J. Guid. Control Dyn.
0731-5090,
24
(
4
), pp.
767
777
.
2.
Taniguchi
,
T.
,
Tanaka
,
K.
, and
Wang
,
H. O.
, 2000, “
Fuzzy Descriptor Systems and Nonlinear Model-Following Control
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
8
(
4
), pp.
442
452
.
3.
Tuan
,
H. D.
,
Apkarian
,
P.
,
Narikiyo
,
T.
, and
Yamamoto
,
Y.
, 2001, “
Parameterized Linear Matrix Inequality Techniques in Fuzzy Control-System Design
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
9
(
2
), pp.
324
332
.
4.
Tseng
,
C. S.
,
Chen
,
B. S.
, and
Uang
,
H. J.
, 2001, “
Fuzzy Tracking Control Design for Nonlinear Dynamic-Systems Via T-S Fuzzy Model
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
9
(
3
), pp.
381
392
.
5.
Lee
,
K. R.
,
Jeung
,
E. T.
, and
Park
,
H. B.
, 2001, “
Robust Fuzzy H-Infinity Control for Uncertain Nonlinear-Systems Via State-Feedback—An LMI Approach
,”
Fuzzy Sets Syst.
0165-0114,
120
(
1
), pp.
123
134
.
6.
Tanaka
,
K.
,
Ikeda
,
T.
, and
Wang
,
H. O.
, 1998, “
Fuzzy Regulators and Fuzzy Observers—Relaxed Stability Conditions and LMI-Based Designs
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
6
(
2
), pp.
250
265
.
7.
Tanaka
,
K.
, and
Wang
,
H. O.
, 2001,
Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach
,
Wiley
,
New York
.
8.
Cao
,
Y. Y.
, and
Frank
,
P. M.
, 2001, “
Stability Analysis and Synthesis of Nonlinear Time-Delay Systems Via Linear Takagi-Sugeno Fuzzy Models
,”
Fuzzy Sets Syst.
0165-0114,
124
(
2
), pp.
213
229
.
9.
Chen
,
B. S.
,
Tsai
,
C. L.
, and
Chen
,
Y. F.
, 2001, “
Mixed H-2/H-Infinity Filtering Design in Multirate Transmultiplexer Systems—LMI Approach
,”
IEEE Trans. Signal Process.
1053-587X,
49
(
11
), pp.
2693
2701
.
10.
Lam
,
H. K.
,
Leung
,
F. H. F.
, and
Tam
,
P. K. S.
, 2002, “
A Linear Matrix Inequality Approach for the Control of Uncertain Fuzzy
,”
IEEE Control Syst. Mag.
0272-1708,
22
(
4
), pp.
20
25
.
11.
Hong
,
S. K.
, and
Langari
,
R.
, 2000, “
An LMI-Based H-Infinity Fuzzy Control-System Design With TS Framework
,”
Inf. Sci. (N.Y.)
0020-0255,
123
(
3–4
), pp.
163
179
.
12.
Gahinet
,
P.
,
Nemirovski
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M.
, 1995,
LMI Control Toolbox
,
The Math Work Inc.
,
Natick, MA
.
13.
Wang
,
W. J.
, and
Sun
,
C. S.
, 2002, “
Relaxed Stability Condition for T-S Fuzzy Discrete System
,”
Hawaii
,
1
, pp.
244
249
.
14.
Chilali
,
M.
, and
Gahinet
,
P.
, 1996, “
H-Infinity Design With Pole-Placement Constraints—An LMI Approach
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
3
), pp.
358
367
.
15.
Chilali
,
M.
,
Gahinet
,
P.
, and
Apkarian
,
P.
, 1999, “
Robust Pole-Placement in LMI Regions
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
12
), pp.
2257
2270
.
16.
Gahinet
,
P.
,
Apkarian
,
P.
, and
Chilali
,
M.
, 1996, “
Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
3
), pp.
436
442
.
17.
Weinmann
,
A.
, 1992,
Uncertain Models and Robust Control
,
Springer-Verlag
,
Berlin
.
18.
Angeli
,
D.
, and
Mosca
,
E.
, 2002, “
Lyapunov-Based Switching Supervisory Control of Nonlinear Uncertain Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
3
), pp.
500
505
.
19.
Leonessa
,
A.
,
Haddad
,
W. M.
, and
Chellaboina
,
V. S.
, 2001, “
Nonlinear System Stabilization Via Hierarchical Switching Control
,”
IEEE Trans. Autom. Control
0018-9286,
46
(
1
), pp.
17
28
.
20.
Corradini
,
M. L.
,
Jetto
,
L.
, and
Orlando
,
G.
, 2004, “
Robust Stabilization of Multivariable Uncertain Plants Via Switching Control
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
1
), pp.
107
114
.
This content is only available via PDF.
You do not currently have access to this content.