An instrumental variable algorithm is presented that estimates the coefficients of a continuous transfer function model directly from sampled data. The algorithm is based on instrumental variables extracted from an auxiliary model and input and output signal derivatives estimated by filtered difference equations. As a result, this method does not require any prior knowledge of the output noise. To ensure the validity of the filtered derivative estimates, a criterion based on the Nyquist frequency and the system bandwidth is established. Then the concept of asymptotic consistency is applied to the proposed instrumental variable algorithm to identify the conditions for convergence of the model parameter estimates. Specifically, the asymptotic consistency conditions impose a continuous and persistent exciting constraint on the input signal. This is analogous to the persistent excitation condition for identification of discrete models. The proposed instrumental variable algorithm is demonstrated within an auto-tuning algorithm for feedback controllers based on plant inversion. In this application, the algorithm is only suitable for lower-order transfer functions that are minimum-phase and stable. These types of systems are common in industrial applications for manufacturing and process control. Here, the algorithm is experimentally validated for automatic tuning of the idle speed controller on a 4.6L Ford V-8 spark ignition engine.

1.
Åström
,
K.
, 1980, “
Maximum Likelihood and Prediction Error Methods
,”
Automatica
0005-1098,
16
, pp.
551
574
.
2.
Söderström
,
T.
, and
Stoica
,
P.
, 1983,
Instrumental Variable Methods for System Identification
,
Springer-Verlag
, Berlin.
3.
Sinha
,
N. K.
, 1973, “
On-Line Identification of Continuous Systems From Sampled Data
,”
Proc. of 3rd IFAC Symposium on Identification and System Parameter Estimation
,
Eykhoff
,
P.
, ed.,
North-Holland
, Amsterdam, Vol.
I
, pp.
385
392
.
4.
Söderström
,
T.
, 1991, “
Computing Stochastic Continuous-Time Models From ARMA Models
,”
Int. J. Control
0020-7179,
53
(
6
), pp.
1311
1326
.
5.
Puthenpura
,
S.
, and
Sinha
,
N. K.
, 1986, “
Identification of Continuous-Time Systems Using Instrumental Variables With Application to an Industrial Robot
,”
IEEE Trans. Ind. Electron.
0278-0046,
IE-33
(
3
), pp.
224
229
.
6.
Sagara
,
S.
, and
Zhao
,
Z.
, 1990, “
Numerical Integration Approach to On-Line Identification of Continuous-Time Systems
,”
Automatica
0005-1098,
26
(
1
), pp.
63
74
.
7.
Sinha
,
N.
, and
Qijie
,
Z.
, 1985, “
Identification of Continuous-Time Systems from Sampled Data: A Comparison of 3 Direct Methods
,”
Proc. of 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation
,
Young
,
P.
, ed.,
Pergamon Press
, London, Vol.
2
, pp.
1575
1578
.
8.
Sinha
,
N.
, and
Rao
,
G.
, 1991,
Identification of Continuous-Time Systems
,
Kluwer
, Dordrecht.
9.
Bigi
,
S.
,
Söderström
,
T.
, and
Carlsson
,
B.
, 1994, “
An IV-Scheme for Estimating Continuous-Time Stochastic Models From Discrete-Time Data
,”
Proc. of 10th IFAC Symposium on System Identification (SYSID’94)
,
Blanke
,
M.
, and
Söderström
,
T.
, eds.,
Pergamon Press
, London, Vol.
3
, pp.
1561
1566
.
10.
Young
,
P.
, 1970, “
An Instrumental Variable Method for Real-Time Identification of a Noisy Process
,”
Automatica
0005-1098,
6
, pp.
271
287
.
11.
Larsson
,
E.
, and
Söderström
,
T.
, 2002, “
Identification of Continuous-Time AR Processes from Unevenly Sampled Data
,”
Automatica
0005-1098,
38
(
4
), pp.
709
718
.
12.
Åström
,
K.
, and
Hägglund
,
T.
, 1984, “
Automatic Tuning of Simple Regulators With Specifications on Phase and Amplitude Margins
,”
Automatica
0005-1098,
20
(
5
), pp.
645
651
.
13.
Schei
,
T.
, 1994, “
Automatic Tuning of PID Controllers Based on Transfer Function Estimation
,”
Automatica
0005-1098,
30
(
12
), pp.
1983
1989
.
14.
Voda
,
A.
, and
Landau
,
I.
, 1995, “
A Method for the Auto-Calibration of PID Controllers
,”
Automatica
0005-1098,
31
(
1
), pp.
41
53
.
15.
Chen
,
C.
, 1989, “
A Simple Method for On-Line Identification and Controller Tuning
,”
AIChE J.
0001-1541,
35
(
12
), pp.
2037
2039
.
16.
Nishikawa
,
Y.
,
Sannomiya
,
N.
,
Ohta
,
T.
, and
Tanaka
,
H.
, 1984, “
A Method for Auto-Tuning of PID Control Parameters
,”
Automatica
0005-1098,
20
(
3
), pp.
321
332
.
17.
Yuwana
,
M.
, and
Seborg
,
D.
, 1982, “
A New Method for On-Line Controller Tuning
,”
AIChE J.
0001-1541,
28
(
3
), pp.
434
440
.
18.
Sung
,
S.
,
Lee
,
I.
, and
Lee
,
J.
, 1998, “
New Process Identification Method for Automatic Design of PID Controllers
,”
Automatica
0005-1098,
34
(
4
), pp.
587
591
.
19.
Åström
,
K.
,
Hägglund
,
T.
,
Hang
,
C.
, and
Ho
,
W.
, 1993, “
Automatic Tuning and Adaptation for PID Controllers—A Survey
,”
Control Eng. Pract.
0967-0661,
1
(
4
), pp.
699
714
.
20.
Wang
,
Q.
,
Lee
,
T.
, and
Tan
,
K.
, 1995, “
Automatic Tuning of Finite Spectrum Assignment Controllers for Delay Systems
,”
Automatica
0005-1098,
31
(
3
), pp.
477
482
.
21.
Ljung
,
L.
, and
Söderström
,
T.
, 1983,
Theory and Practice of Recursive Identification
,
MIT Press
, Cambridge, MA.
22.
Chapra
,
S.
, and
Canale
,
R.
, 1988,
Numerical Methods for Engineers
,
McGraw-Hill
, New York.
23.
Bendat
,
J.
, and
Piersol
,
A.
, 1986,
Random Data—Analysis and Measurement Procedures
,
Wiley
, New York.
24.
Oppenheim
,
A.
, and
Schafer
,
R.
, 1989,
Discrete-Time Signal Processing
,
Prentice-Hall
, Englewood Cliffs, NJ.
25.
Åström
,
K.
, 1970,
Introduction to Stochastic Control Theory
,
Academic Press
, New York.
26.
Papoulis
,
A.
, 1991,
Probability, Random Variables, and Stochastic Processes
,
McGraw-Hill
, New York.
27.
Levine
,
W.
, ed., 1996,
The Control Handbook
,
CRC Press
, Boca Raton.
28.
Hamilton
,
G.
, and
Franchek
,
M.
, 1997, “
Robust Controller Design and Experimental Verification of I.C. Engine Idle Speed Control
,”
Int. J. Robust Nonlinear Control
1049-8923,
7
, pp.
609
627
.
29.
Söderström
,
T.
, 1975, “
Ergodicity Results for Sample Covariances
,”
Probl. Control Inf. Theory
,
4
(
2
), pp.
131
138
.
You do not currently have access to this content.