Abstract

Successful fabrication of intermetallic coatings on surfaces of manufacturing interest involves regulation of the temperature/concentration dynamic distributions that develop in the molten layer during the thermal and reaction process. Modeling the spatio-temporal dynamics of this metallurgical process, however, requires partial differential equations that are cumbersome to solve on-line, as part of a real time reference model to the controller. To this end, we present a computationally parallel and meshless model (i.e., decoupled with the capability to be solved numerically in real time) to decipher the dynamics of the thermal coating process and to permit real time monitoring and control of the resulting coating microstructure. The analytical model is based on kinetic growth theories, lumped energy and mass balances, and convolution expressions of distributed temperature and concentration Green’s fields (accounting for the orientation of their gradient and decomposing heat and mass transfer across the coating from substrate conduction). The model is validated with nickel aluminide coatings processed on a robotic plasma arc laboratory station, through in-process infrared thermal sensing and off-line metallographic analysis. A Monte Carlo sample control scheme, that involves on-line parameter identification and model adaptation, is also developed using the model as an in-process observer for successful production of binary metal system coatings that exhibit the desired microstructure geometry and characteristics.

1.
Mathenson
,
R. R.
, 2002, “
20th- to 21st-Century Technological Challenges in Soft Coatings
,”
Science
0036-8075,
297
, pp.
976
979
.
2.
Ding
,
Y.
,
Zhang
,
Y.
,
Northwood
,
D. O.
, and
Alpas
,
A. T.
, 1997, “
PVD NiAl Intermetallic Coatings: Microstructure and Mechanical Properties
,”
Surf. Coat. Technol.
0257-8972,
94–95
, pp.
483
489
.
3.
Hearley
,
J. A.
,
Little
,
J. A.
, and
Sturgeon
,
A. J.
, 1999, “
The Erosion Behaviour of NiAl Intermetallic Coatings Produced by High Velocity Oxy-Fuel Thermal Spraying
,”
Wear
0043-1648,
233–235
, pp.
328
333
.
4.
Chen
,
H. C.
, and
Pfender
,
E.
, 1996, “
Microstructure of Plasma-Sprayed Ni-Al Alloy Coating on Mild Steel
,”
Thin Solid Films
0040-6090,
280
, pp.
188
198
.
5.
Pope
,
D. P.
, and
Darolia
,
R.
, 1996, “
High-Temperature Applications of Intermetallic Compounds
,”
J. Mater. Educ.
0738-7989,
18
, pp.
205
219
.
6.
Darolia
,
R.
, 1991, “
NiAl Alloys for High-Temperature Structural Applications
,”
J. Met.
0148-6608,
43
, pp.
44
48
.
7.
Sikka
,
V. K.
,
Mavity
,
J. T.
, and
Anderson
,
K.
, 1992, “
Processing of Nickel Aluminides and Their Industrial Applications
,”
Mater. Sci. Eng., A
0921-5093,
153
, pp.
712
721
.
8.
Deevi
,
S. C.
,
Sikka
,
V. K.
,
Swindeman
,
C. J.
, and
Seals
,
R. D.
, 1997, “
Application of Reaction Synthesis Principle to Thermal Spray Coatings
,”
J. Mater. Sci.
0022-2461,
32
, pp.
3315
3325
.
9.
Sugama
,
T.
, 1998, “
Polyphenylenesulphide-sealed Ni-Al Coatings for Protecting Steel From Corrosion and Oxidation in Geothermal Environments
,”
J. Mater. Sci.
0022-2461,
33
, pp.
3791
3803
.
10.
ASM Handbook
, 1990,
Friction, Lubrication and Wear Technology
,
American Society for Metals
,
Metals Park, OH
, Vol.
18
.
11.
Bunshah
,
R. F.
, ed., 1994,
Handbook of Deposition Technologies for Films and Coatings
, 2nd ed.,
Noyes
,
Park Ridge, NJ
.
12.
Goward
,
G. W.
,
Boone
,
D. H.
, and
Giggins
,
C. S.
, 1967, “
Formation and Degradation Mechanisms of Aluminide Coatings on Nickel-Base Superalloys
,”
ASM Trans. Q.
0097-3912,
60
, pp.
228
241
.
13.
Ranganathan
,
R.
,
Vayena
,
O.
,
Doumanidis
,
C. C.
,
Ando
,
T.
,
Blue
,
C.
, 2001, “
In-Situ Processing of Nickel Aluminides
,”
Proceedings of the 2001 Minerals, Metals and Materials Society Annual Meeting
, pp.
171
180
.
14.
Fromberg
,
W.
, and
Donaldson
,
F. A. S.
, 1996, “
Electroplating With Aluminum
,”
Advanced Materials and Processes
,
2
, pp.
33
35
.
15.
Fischer
,
J.
, and
Fuhr
,
B.
, 1999, “
Aluminum Plating Replaces Cadmium
,”
Advanced Materials Processes
,
155
, pp.
27
29
.
16.
Tzafestas
,
S. G.
, ed., 1982,
Distributed Parameter Control Systems
,
Pergamon
,
Oxford
.
17.
Ray
,
W. H.
, and
Lainiotis
,
D. G.
, 1978,
Distributed Parameter Systems: Identification, Estimation, and Control
,
Marcel Dekker
,
New York
.
18.
Li
,
M.
,
Shi
,
D.
, and
Christofides
,
P. D.
, 2004, “
Diamond Jet Hybrid HVOF Thermal Spray: Gas-Phase and Particle Behavior Modeling and Feedback Control Design
,”
Ind. Eng. Chem. Res.
0888-5885,
43
, pp.
3632
3652
.
19.
Shi
,
D.
,
Li
,
M.
, and
Christofides
,
P. D.
, 2004, “
Diamond Jet Hybrid HVOF Thermal Spray: Rule-Based Modeling of Coating Microstructure
,”
Ind. Eng. Chem. Res.
0888-5885,
43
, pp.
3653
3665
.
20.
Fincke
,
J. R.
,
Swank
,
W. D.
,
Bewley
,
R. L.
,
Haggard
,
D. C.
,
Gevelber
,
M.
, and
Wroblewski
,
D.
, 2001, “
Diagnostics and Control in the Thermal Spray Process
,”
Surf. Coat. Technol.
0257-8972,
146
, pp.
537
543
.
21.
Alaeddine
,
M.
,
Ranganathan
,
R.
,
Ando
,
T.
, and
Doumanidis
,
C. C.
, 2005, “
Modeling the Melting and Dissolution Stages During Reactive Thermal Processing of Intermetallic Coatings From Layered Precursors
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
1
), pp.
148
156
.
22.
Alaeddine
,
M.
,
Ranganathan
,
R.
,
Ando
,
T.
, and
Doumanidis
,
C. C.
, 2005, “
Modeling the Intermetallic Coating Growth During Reactive Thermal Processing of Layered Precursors
,”
Surf. Coat. Technol.
0257-8972, in press.
23.
Alaeddine
,
M.
, 2004, “
Meshless Modeling and Control of the Reactive Fabrication of Intermetallic Coatings From Layered Precursors
,” Ph.D. dissertation, Department of Mechanical Engineering, Tufts University, Medford, MA.
24.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
, 2nd ed.,
Clarendon
,
Oxford
.
25.
Beck
,
J. V.
,
Cole
,
K. D.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
, 1992,
Heat Conduction Using Green’s Functions
,
Hemisphere
.
26.
Tsai
,
N. S.
, and
Eagar
,
T. W.
, 1984,
Modelling of Casting and Welding Processes II
,
J. A.
Dantzig
and
J. V.
Berry
, eds.,
AIME
,
NY
, Vol.
317
.
27.
Doumanidis
,
C. C.
, and
Fourligkas
,
N.
, 1996, “
Distributed Parameter Control of the Heat Source Trajectory in Thermal Materials Processing
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
571
578
.
28.
Ranganathan
,
R.
, 2001, “
Fabrication of Intermetallic and Composite Coatings from Precursors
,” Masters thesis, Northeastern University, Boston, MA.
29.
TurnBull
,
D.
, and
Bagley
,
B. G.
, 1975, “
Transitions in Viscous Liquids and Gases
,”
Treatise on Solid State Chemistry
,
Plenum
,
New York
, Vol.
5
, pp.
513
554
.
30.
Aziz
,
M. J.
, 1982, “
Model for Solute Redistribution During Rapid Solidification
,”
J. Appl. Phys.
0021-8979,
53
(
2
), pp.
1158
1168
.
31.
DiVenuti
,
D. A.
, and
Ando
,
T.
, 1998, “
A Dendrite Growth Model Accomodating Curved Phase Boundaries and High Péclet Number Conditions
,”
Metall. Mater. Trans. A
1073-5623,
29A
, pp.
3047
3056
.
32.
Demetriou
,
M. A.
,
Paskaleva
,
A.
,
Vayena
,
O.
, and
Doumanidis
,
C. C.
, 2002, “
Experimental Verification of a Scanning Actuator Guidance Scheme in a One-Dimensional Thermal Manufacturing Process
,”
Proceedings of the 2002 40th IEEE Conference on Decision and Control
, Vol.
1
, pp.
549
554
.
33.
Fourligkas
,
N.
, 2000, “
A New Thermal Rapid Prototyping Process by Fused Material Deposition: Implementation, Modeling and Control
,” Doctoral dissertation, Tufts University, Medford, MA.
34.
Kailath
,
T.
, 1980,
Linear Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.