The relationship between multiloop design and Bristol gains of a multivariable plant is shown. The Bristol and relative gains are distinguished. The Bristol gains B characterize the plant and the relative gains Λ characterize the designed feedback system. It is Λ, not B, that determines the interaction in loop designs. Λ is equal to B in a loop only at frequencies where all other loop gains are much above 0dB, usually significantly below the respective loop gain crossover frequencies. Λ=1 in a loop at frequencies where all other loop gains are much below 0dB, usually significantly above the respective loop gain crossover frequencies. The transition of Λ in a loop from B to 1 in the important medium frequency range is one of the most interesting and under-researched aspects of loop design interaction.

1.
Bristol
,
E. H.
, 1966, “
On a New Measure of Interaction for Multivariable Process Control
,”
IEEE Trans. Autom. Control
0018-9286,
AC–11
, pp.
133
134
.
2.
McAvoy
,
J. Thomas
, 1983,
Interaction Analysis: Principles and Applications
,
Instrument Society of America
, Research Triangle Park.
3.
Shinskey
,
F. Greg
, 1988,
Process Control Systems
,
McGraw-Hill
, New York.
4.
Hovd
,
M.
, and
Skogestad
,
S.
, 1992, “
Simple Frequency-Dependent Tools for Control System Analysis, Structure Selection and Design
,”
Automatica
0005-1098,
28
(
5
), pp.
989
996
.
5.
Horowitz
,
Isaac
, 1993,
Quantitative Feedback Design Theory (QFT)
,
QFT
, Boulder.
6.
Eitelberg
,
E.
, 1999,
Load Sharing Control
,
NOYB
, Durban.
7.
Eitelberg
,
E.
, 1999, “
Load Sharing in a Multivariable Temperature Control System
,”
Control Eng. Pract.
0967-0661,
7
(
11
), pp.
1369
1377
.
8.
Eitelberg
,
E.
, 2003, “
On Multivariable Tracking
,” 6th International Symposium on Quantitative Feedback Theory (in conjunction with the First African Control Conference), University of Cape Town, South Africa, Vol.
2
, pp.
514
519
.
9.
Yaniv
,
Oded
,
Gutman
, and
Per-Olof
, 2002, “
Crossover Frequency Limitations in MIMO Nonminimum Phase Feedback Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC–47
(
9
), pp.
1560
1564
.
10.
Kerr
,
M. L.
,
Jayasuriya
,
S.
, and
Asokanthan
,
S. F.
, 2005, “
Robust Stability of Sequential Multi-Input Multi-Output Quantitative Feedback Theory designs
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
250
256
.
11.
Skogestad
,
S.
,
Morari
,
M.
, and
Doyle
,
J. C.
1988, “
Robust Control of Ill Conditioned Plants: High Purity Distillation
,”
IEEE Trans. Autom. Control
0018-9286,
33
, pp.
1092
1105
;
Skogestad
,
S.
,
Morari
,
M.
, and
Doyle
,
J. C.
A correction: 1989, “
Robust Control of Ill Conditioned Plants: High Purity Distillation
,”
IEEE Trans. Autom. Control
0018-9286,
34
(
6
), p.
672
.
12.
Limebeer
,
D. J. N.
, 1991, “
The Specification and Purpose of a Controller Design Case Study
,”
Proceedings of the Conference on Decision and Control
. Brighton, pp.
1579
1580
.
13.
Limebeer
,
D. J. N.
,
Kasenally
,
E. M.
, and
Perkins
,
J. D.
, 1993, “
On the Design of Robust Two Degree of Freedom Controllers
,”
Automatica
0005-1098,
29
(
1
), pp.
157
168
.
14.
Lundström
,
P.
,
Skogestad
,
S.
, and
Doyle
,
J. C.
, 1999, “
Two-Degree-of-Freedom Controller Design for an Ill-Conditioned Distillation Process Using μ-Synthesis
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
(
1
), pp.
12
22
.
15.
Boje
,
E.
, 2002, “
Multivariable Quantitative Feedback Design for Tracking Error Specifications
,”
Automatica
0005-1098,
38
, pp.
131
138
.
16.
Luyben
,
W. L.
, 1990,
Process Modelling, Simulation and Control for Chemical Engineers
,
2nd ed.
McGraw-Hill
.
17.
Leithead
,
W. E.
, and
O’Reilly
,
J.
, 1992, “
Performance Issues in the Individual Channel Design of 2-input 2-output Systems, Part 3. Nondiagonal Control and Related Issues
,”
Int. J. Control
0020-7179,
55
, pp.
265
312
.
18.
Yaniv
,
O.
, and
Schwartz
,
B.
, 1991, “
Criterion for Loop Stability in MIMO Feedback Systems Having an Uncertain Plant
,”
Int. J. Control
0020-7179,
53
(
3
), pp.
527
539
.
19.
Eitelberg
,
E.
, 2000,
Control Engineering
,
NOYB
, Durban.
20.
Yaniv
,
Oded
, 1992, “
Synthesis of Uncertain MIMO Feedback Systems for Gain and Phase Margin at Different Channel Breaking Points
,”
Automatica
0005-1098,
28
(
5
), pp.
1017
1020
.
21.
Yaniv
,
O.
, and
Barlev
,
N.
, 1990, “
Robust Noniterative Synthesis of Ill-Conditioned Plants
,” American Control Conference, San Diego.
You do not currently have access to this content.