System-level modeling and control strategy development for a fuel cell hybrid vehicle (FCHV) are presented in this paper. A reduced-order fuel cell model is created to accurately predict the fuel cell system efficiency while retaining dynamic effects of important variables. The fuel cell system model is then integrated with a DC/DC converter, a Li-ion battery, an electric drive, and tire/vehicle dynamics to form an FCHV. In order to optimize the power management strategy of the FCHV, we develop a stochastic design approach based on the Markov chain modeling and stochastic dynamic programming (SDP). The driver demand is modeled as a Markov process to represent the future uncertainty under diverse driving conditions. The infinite-horizon SDP solution generates a stationary state-feedback control policy to achieve optimal power management between the fuel cell system and battery. Simulation results over different driving cycles are presented to demonstrate the effectiveness of the proposed stochastic approach.

1.
Friedman
,
D.
,
Lipman
,
T.
,
Eggert
,
A.
,
Ramaswamy
,
S.
, and
Hauer
,
K.
, 2000, “
Hybridization: Cost and Efficiency Comparisons for PEM Fuel Cell Vehicles
,” SAE Paper No. 2000–01–3078.
2.
Ogburn
,
M.
,
Nelson
,
D. J.
,
Luttrell
,
W.
,
King
,
B.
,
Postle
,
S.
, and
Fahrenkrog
,
R.
, 2000, “
Systems Integration and Performance Issues in a Fuel Cell Hybrid Electric Vehicle
,” SAE Paper No. 2000–01–0376.
3.
Paganelli
,
G.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
, 2002, “
Optimizing Control Strategy for Hybrid Fuel Cell Vehicle
,” SAE Paper, No. 2002–01–0102.
4.
Guezennec
,
Y.
,
Choi
,
T.
,
Paganelli
,
G.
, and
Rizzoni
,
G.
, 2003, “
Supervisory Control of Fuel Cell Vehicles and its Link to Overall System Efficiency and Low-Level Control Requirements
,”
2003 American Control Conference
, Denver, Colorado.
5.
Boettner
,
D. D.
,
Paganelli
,
G.
,
Guezennec
,
Y. G.
,
Rizzoni
,
G.
, and
Moran
,
M. J.
, 2001, “
Component Power Sizing and Limits of Operation for Proton Exchange Membrane (PEM) Fuel Cell/Battery Hybrid Automotive Applications
,”
2001 ASME International Mechanical Engineering Congress and Exposition
.
6.
Liang
,
C.
,
Weihua
,
W.
, and
Qingnian
,
W.
, 2003, “
Study of Control Algorithm and Parametric Design of Fuel Cell Hybrid Transit Bus
,” SAE Paper No. 2003–01–1139.
7.
Wipke
,
K.
,
Markel
,
T.
, and
Nelson
,
D.
, 2001, “
Optimizing Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV
,”
18th International Electric Vehicle Symposium (EVS 18)
, Berlin.
8.
Gao
,
Y.
, and
Ehsani
,
M.
, 2001, “
Systematic Design of Fuel Cell Powered Hybrid Vehicle Drive Train
,” SAE Paper No. 2001–01–2532.
9.
Pukrushpan
,
J. T.
,
Peng
,
H.
, and
Stefanopoulou
,
A. G.
, 2004, “
Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
14
25
.
10.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
, 2002, “
Modeling and Control for PEM Fuel Cell Stack System
,”
2002 American Control Conference
, Anchorage, AK.
11.
Lin
,
C. C.
,
Peng
,
H.
, and
Grizzle
,
J. W.
, 2004, “
A Stochastic Control Strategy for Hybrid Electric Vehicles
,”
2004 American Control Conference
, Boston.
12.
Kolmanovsky
,
I.
,
Siverguina
,
I.
, and
Lygoe
,
B.
, 2002, “
Optimization of Powertrain Operation Policy for Feasibility Assessment and Calibration: Stochastic Dynamic Programming Approach
,”
2002 American Control Conference
, Anchorage, AK.
13.
Moraal
,
P.
, and
Kolmanovsky
,
I.
, 1999, “
Turbocharger Modeling for Automotive Control Applications
,” SAE Paper No. 1999–01–0908.
14.
Pukrushpan
,
J. T.
, 2003, “
Modeling and Control of Fuel Cell Systems and Fuel Processors
,” Ph.D. dissertation, University of Michigan.
15.
Boettner
,
D. D.
,
Paganelli
,
G.
,
Guezennec
,
Y. G.
,
Rizzoni
,
G.
, and
Moran
,
M. J.
, 2002, “
Proton Exchange Membrane Fuel Cell System Model for Automotive Vehicle Simulation and Control
,”
J. Energy Resour. Technol.
0195-0738,
124
, pp.
20
27
.
16.
Gurski
,
S. D.
, and
Nelson
,
D. J.
, 2003, “
Cold Start Fuel Economy and Power Limitations for a PEM Fuel Cell Vehicle
,” SAE Paper No. 2003–01–0422.
17.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
Chichester
.
18.
Leyva
,
R.
,
Martinez-Salamero
,
L.
,
Valderrama-Blavi
,
H.
,
Maixe
,
J.
, and
Giral
,
R.
, 2001, “
Linear State-Feedback Control of a Boost Converter for Large-Signal Stability
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
48
(
4
), pp.
418
424
.
19.
Li
,
H.
,
Peng
,
F. Z.
, and
Lawler
,
J. S.
, 2003, “
A Natural ZVS Medium-Power Bidirectional DC-DC Converter With Minimum Number of Devices
,”
IEEE Trans. Ind. Appl.
0093-9994,
39
(
2
), pp.
525
535
.
20.
Shieh
,
H. J.
, and
Shyu
,
K. K.
, 1999, “
Nonlinear Sliding-Mode Torque Control With Adaptive Backstepping Approach for Induction Motor Drive
,”
IEEE Trans. Ind. Appl.
0093-9994,
46
(
2
), pp.
380
389
.
21.
Sudhoff
,
S. D.
,
Corzine
,
K. A.
,
Glover
,
S. F.
,
Hegner
,
H. J.
, and
Robey
,
H. N.
, 1998, “
DC Link Stabilized Field Oriented Control of Electric Propulsion System
,”
IEEE Trans. Energy Convers.
0885-8969,
13
(
1
), pp.
27
33
.
22.
Bowles
,
P. D.
, 1999, “
Modeling and Energy Management for a Parallel Hybrid Electric Vehicle (PHEV) with Continuously Variable Transmission (CVT)
,” University of Michigan.
23.
Lin
,
C. C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J.
, 2003, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
11
(
6
), pp.
839
849
.
24.
Bertsekas
,
D. P.
, 1995,
Dynamic Programming and Optimal Control
,
Athena Scientific
,
Belmont
.
25.
Puterman
,
M. L.
, 1994,
Markov Decision Processes: Discrete Stochastic Dynamic Programming
,
Wiley
,
New York
.
You do not currently have access to this content.