Background. This article presents a method for describing the dynamic performance of multilegged robots. It involves examining how well the legged system uses ground contact to produce acceleration of its body; these abilities are referred to as its force and acceleration capabilities. These capabilities are bounded by actuator torque limits and the no-slip condition. Method of Approach. The approach followed here is based on the dynamic capability equations, which are extended to consider frictional ground contact as well as the changes in degrees-of-freedom that occurs as the robot goes into and out of contact with the ground. Results. The analysis describes the maximum translational and rotational accelerations of the main-body that are guaranteed to be achievable in every direction without causing slipping at the contact points or saturating an actuator. Conclusion. This analysis provides a description of the mobility and agility of legged robots. The method is illustrated using a hexapod as an example.

1.
Bowling
,
A.
, and
Khatib
,
O.
, 2005, “
The Dynamic Capability Equations: A New Tool for Analyzing Manipulator Dynamic Performance
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
1
), pp.
115
123
.
2.
Vertut
,
J.
, and
Liegeois
,
A.
, 1981, “
General Design Criteria for Manipulators
,”
Mech. Mach. Theory
0094-114X,
16
(
1
), pp.
65
70
.
3.
Khatib
,
O.
, 1995, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Robot. Res.
0278-3649,
13
(
1
), pp.
19
36
.
4.
Asada
,
H.
, 1983, “
A Geometrical Representation of Manipulator Dynamics and its Application to Arm Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
105
(
3
), pp.
131
135
.
5.
Ma
,
O.
, and
Angeles
,
J.
, 1990, “
The Concept of Dynamic Isotropy and its Applications to Inverse Kinematics and Trajectory Planning
,” in
Proceedings IEEE International Conference on Robotics and Automation
,
1
, pp.
481
486
.
6.
Singh
,
J. R.
, and
Rastegar
,
J.
, 1992, “
Optimal Synthesis of Robot Manipulators Based on Global Dynamic Parameters
,”
Int. J. Robot. Res.
0278-3649,
11
(
6
), pp.
538
548
.
7.
Yoshikawa
,
T.
, 1985, “
Dynamic Manipulability of Robot Manipulators
,” in
Proceedings IEEE International Conference on Robotics and Automation
,
St. Louis, Missouri
, pp.
1033
1038
.
8.
Chiacchio
,
P.
,
Chiaverini
,
S.
,
Sciavicco
,
L.
, and
Siciliano
,
B.
, 1991, “
Reformulation of Dynamic Manipulability Ellipsoid for Robotic Manipulators
,” in
Proceedings IEEE International Conference on Robotics and Automation
,
Sacramento
,
California
, Vol.,
3
, pp.
2192
2197
.
9.
Graettinger
,
T. J.
, and
Krogh
,
B. H.
, 1988, “
The Acceleration Radius: A Global Performance Measure for Robotic Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
4
(
1
), pp.
60
69
.
10.
Khatib
,
O.
, and
Burdick
,
J.
, 1987, “
Optimization of Dynamics in Manipulator Design: The Operational Space Formulation
,”
Int. J. Robot. Res.
0278-3649,
2
(
2
), pp.
90
98
.
11.
Kim
,
Y.
, and
Desa
,
S.
, 1993, “
The Definition, Determination, and Characterization of Acceleration Sets for Spatial Manipulators
,”
Int. J. Robot. Res.
0278-3649,
12
(
6
), pp.
572
587
.
12.
Orin
,
D. E.
, and
Oh
,
S. Y.
, 1981. “
Control of Force Distribution in Robotic Mechanisms Containing Closed Kinematic Chains
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
103
(
2
), pp.
134
141
.
13.
Cheng
,
F.-T.
, and
Orin
,
D. E.
, 1991. “
Efficient Formulation of the Force Distribution Equations for Simple Closed-chain Robotic Mechanisms
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
21
(
1
), pp.
25
32
.
14.
McGhee
,
R. B.
, and
Iswandhi
,
G. I.
, 1979. “
Adaptive locomotion of a multilegged robot over rough terrain
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
SMC-9
(
4
), pp.
176
182
.
15.
Waldron
,
K. J.
, 1986. “
Force and motion management in legged locomotion
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
RA-2
(
4
), pp.
214
220
.
16.
Klein
,
C. A.
, and
Chung
,
T.-S.
, 1987. “
Force Interaction and Allocation for the Legs of a Walking Vehicle
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
RA-3
(
6
), pp.
546
555
.
17.
Galvez
,
J. A.
,
Estremera
,
J.
, and
De Santos
,
P. G.
, 2003. “
A New Legged-Robot Configuration for Research in Force Distribution
,”
Mechatronics
0957-4158,
13
(
8-9
), pp.
907
932
.
18.
Jiang
,
W.
,
Liu
,
A.
, and
Howard
,
D.
, 2004. “
Optimization of Legged Robot Locomotion by Control of Foot-Force Distribution
,”
Trans. Inst. Meas. Control (London)
0142-3312,
26
(
4
), pp.
311
323
.
19.
Kumar
,
V. R.
, and
Waldron
,
K. J.
, 1988. “
Force Distribution in Closed Kinematic Chains
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
6
), pp.
657
664
.
20.
Cheng
,
F.-T.
, and
Orin
,
D. E.
, 1991. “
Optimal Force Distribution in Multiple-Chain Robotic Systems
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
21
(
1
), pp.
13
24
.
21.
Chen
,
J.-S.
,
Cheng
,
F.-T.
,
Yang
,
K.-T.
,
Kung
,
F.-C.
, and
Sun
,
Y.-Y.
, 1999. “
Optimal Force Distribution in Multilegged Vehicles
,”
Robotica
0263-5747,
17
(
2
), pp.
159
172
.
22.
Kar
,
D.
,
Issac
,
K. K.
, and
Jayarajan
,
K.
, 2001. “
Minimum Energy Force Distribution for a Walking Robot
,”
J. Rob. Syst.
0741-2223,
18
(
2
), pp.
47
54
.
23.
Howard
,
D.
,
Zhang
,
S. J.
,
Sanger
,
D. J.
, and
Miao
,
S.
, 1997, “
Multilegged Walker Design-The Joint Torque Versus Workspace Compromise
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
211
(
6
), pp.
477
488
.
24.
Zhao
,
Y.
,
Lu
,
L.
,
Zhao
,
T.
,
Du
,
Y.
, and
Huang
,
Z.
, 2000, “
Dynamic Performance Ananlysis of Six-Legged Walking Machines
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
155
163
.
25.
Huang
,
Q.
,
Li
,
K.
,
Nakamura
,
Y.
, and
Tanie
,
K.
, 2001, “
Analysis of Physical Capability of a Biped Humanoid: Walking Speed and Actuator Specifications
,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
1
, pp.
253
258
.
26.
Clark
,
J. E.
,
Cutcosky
,
M. R.
, and
Thelen
,
D. G.
, 2004, “
Dynamic Simulation and Analysis of a Passively Self-Stabilizing Hexapedal Running Robot
,” in
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Vol.
73
, pp.
1261
1269
.
27.
Silva
,
M. F.
,
Machado
,
J. A. T.
, and
Lopes
,
A. M.
, 2002, “
Performance Analysis of Multi-Legged Systems
,” in
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2234
2239
.
28.
Huang
,
Z.
, and
Zhao
,
Y. S.
, 1994, “
The Accordance and Optimization-Distribution Equations of the Over-Determinate Inputs of Walking Machines
,”
Mech. Mach. Theory
0094-114X,
29
(
2
), pp.
327
332
.
29.
Harmeyer
,
S.
, and
Bowling
,
A.
, 2004, “
Dynamic Performance as a Criterion for Redundant Manipulator Control
,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Sendai, Japan
, Vol.
3
, pp.
3601
3606
.
30.
Kim
,
C.
, and
Bowling
,
A.
, 2003, “
End-Effector Velocity Effects on Robotic Manipulator Dynamic Performance: An Analytical Approach
,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Choimbra
,
Portugal
, Vol.
2
, pp.
770
775
.
31.
Hemami
,
H.
, and
Golliday
, Jr.,
C. L. G.
, 1977, “
The Inverted Pendulum and Biped Stability
,”
Math. Biosci.
0025-5564,
34
(
1/2
), pp.
95
110
.
32.
Haug
,
E.
, 1986, “
Dynamics of Mechanical Systems With Coulomb Friction, Stiction, Impact and Constraint Addition-Deletion-I: Theory
,”
Mech. Mach. Theory
0094-114X,
21
(
5
), pp.
401
406
.
33.
Stewart
,
D. E.
, 2000, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
0036-1445,
42
(
1
), pp.
3
39
.
34.
Klein
,
C. A.
, and
Kittivatcharapong
,
S.
, 1990, “
Optimal Force Distribution for the Legs of a Walking Machine With Friction Cone
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
1
), pp.
73
85
.
35.
Mouri
,
T.
,
Yamada
,
T.
,
IWAI
,
A.
,
Mimura
,
N.
, and
Funahashi
,
Y.
, 2001, “
Identification of Contact Conditions From Contaminated Data of Contact Force and Moment
,” in
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
597
603
.
36.
Greenwood
,
D. T.
, 1988,
Principles of Dynamics
,
2nd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
37.
Shabana
,
A. A.
, 1988,
Computational Dynamics
,
1st ed.
,
Wiley
,
New York
.
38.
Xydas
,
N.
, and
Kao
,
I.
, 1999, “
Modeling of Contact Mechanics and Friction Limit Surfaces for Soft Fingers in Robotics, With Experimental Results
,”
Int. J. Robot. Res.
0278-3649,
18
(
8
), pp.
941
950
.
39.
Strang
,
G.
, 1988,
Linear Algebra and its Applications
,
3rd ed.
,
Harcourt Brace Jovanovich
.
40.
Fukuda
,
K.
, and
Prodon
,
A.
, 1996, “
Double Description Method Revisited
,”
Combinatorics and Computer Science: Lecture Notes in Computer Science
, Vol.
1120
, pp.
91
111
.
You do not currently have access to this content.