Abstract

Design of a stable adaptive controller and observer for a class of nonlinear systems that contain product of unmeasurable states and unknown parameters is considered. The nonlinear system is cast into a suitable form based on which a stable adaptive controller and observer are designed using a parameter dependent Lyapunov function. The class of nonlinear systems considered is practically relevant; mechanical systems with dynamic friction fall into this category. Experimental results on a single-link mechanical system with dynamic friction are shown for the proposed design.

1.
Lüders
,
G.
, and
Narendra
,
K. S.
, 1974, “
Stable Adaptive Schemes for State Estimation and Identification of Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
19
, pp.
841
847
.
2.
Kreisselmeier
,
G.
, 1977, “
Adaptive Observers With Exponential Rate of Convergence
,”
IEEE Trans. Autom. Control
0018-9286,
22
, pp.
2
8
.
3.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
, 1989,
Stable Adaptive Control
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
4.
Kristic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P.
, 1995,
Nonlinear and Adaptive Control Design
,
Wiley-Interscience
,
New York
.
5.
Marino
,
R.
, and
Tomei
,
P.
, 1995,
Nonlinear Control Design—Geometric, Adaptive and Robust
,
Prentice–Hall
,
Hemel, Hempstead
.
6.
Druzhinina
,
M.
,
Nikiforov
,
V.
, and
Fradkov
,
A.
, 1996, “
Adaptive Output Control Methods for Nonlinear Objects
,”
Autom. Remote Control (Engl. Transl.)
0005-1179,
57
, pp.
153
176
.
7.
Krener
,
A. J.
, and
Kang
,
W.
, 2003, “
Locally Convergent Nonlinear Observers
,”
SIAM J. Control Optim.
0363-0129,
42
, pp.
155
177
.
8.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
, 1987, “
Persisent Excitation in Adaptive Systems
,”
Int. J. Control
0020-7179,
45
, pp.
127
160
.
9.
Kazantzis
,
N.
, and
Kravaris
,
C.
, 1998, “
Nonlinear Observer Design Using Lyapunov’s Auxiliary Theorem
,”
Syst. Control Lett.
0167-6911,
34
, pp.
241
247
.
10.
Krener
,
A. J.
, and
Isidori
,
A.
, 1983, “
Linearization by Output Injection and Nonlinear Observers
,”
Syst. Control Lett.
0167-6911,
3
, pp.
47
52
.
11.
Bastin
,
G.
, and
Gevers
,
H. R.
, 1988, “
Stable Adaptive Observers for Nonlinear Time-Varying Systems
,”
IEEE Trans. Autom. Control
0018-9286,
33
,
650
658
.
12.
Isidori
,
A.
, 1989,
Nonlinear Control Systems
,
Springer-Verlag
,
New York
.
13.
Marino
,
R.
, and
Tomei
,
P.
, 1995, “
Adaptive Observers With Arbitrary Exponential Rate of Convergence for Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
1300
1304
.
14.
Santosuosso
,
G.
, and
Tomei
,
P.
, 2002, “
Global Adaptive Output Feedback Controllers With Application to Nonlinear Friction Compensation
,”
Int. J. Adapt. Control Signal Process.
0890-6327,
16
, pp.
619
634
.
15.
Yu
,
K. T.
,
Jo
,
N. H.
, and
Seo
,
J. H.
, 2003, “
Nonlinear Adaptive Observer for a Parameter Affine Linearizable System
,”
Proceedings of the 42nd IEEE Conference on Decision and Control
,
Maui
,
Hawaii
.
16.
Ioannou
,
P. A.
, and
Sun
,
J.
, 1996,
Robust Adaptive Control
,
Prentice–Hall
,
Upper Saddle River, NJ
.
17.
deWit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
419
425
.
You do not currently have access to this content.