Abstract
Design of a stable adaptive controller and observer for a class of nonlinear systems that contain product of unmeasurable states and unknown parameters is considered. The nonlinear system is cast into a suitable form based on which a stable adaptive controller and observer are designed using a parameter dependent Lyapunov function. The class of nonlinear systems considered is practically relevant; mechanical systems with dynamic friction fall into this category. Experimental results on a single-link mechanical system with dynamic friction are shown for the proposed design.
Issue Section:
Technical Briefs
1.
Lüders
, G.
, and Narendra
, K. S.
, 1974, “Stable Adaptive Schemes for State Estimation and Identification of Linear Systems
,” IEEE Trans. Autom. Control
0018-9286, 19
, pp. 841
–847
.2.
Kreisselmeier
, G.
, 1977, “Adaptive Observers With Exponential Rate of Convergence
,” IEEE Trans. Autom. Control
0018-9286, 22
, pp. 2
–8
.3.
Narendra
, K. S.
, and Annaswamy
, A. M.
, 1989, Stable Adaptive Control
, Prentice–Hall
, Englewood Cliffs, NJ
.4.
Kristic
, M.
, Kanellakopoulos
, I.
, and Kokotovic
, P.
, 1995, Nonlinear and Adaptive Control Design
, Wiley-Interscience
, New York
.5.
Marino
, R.
, and Tomei
, P.
, 1995, Nonlinear Control Design—Geometric, Adaptive and Robust
, Prentice–Hall
, Hemel, Hempstead
.6.
Druzhinina
, M.
, Nikiforov
, V.
, and Fradkov
, A.
, 1996, “Adaptive Output Control Methods for Nonlinear Objects
,” Autom. Remote Control (Engl. Transl.)
0005-1179, 57
, pp. 153
–176
.7.
Krener
, A. J.
, and Kang
, W.
, 2003, “Locally Convergent Nonlinear Observers
,” SIAM J. Control Optim.
0363-0129, 42
, pp. 155
–177
.8.
Narendra
, K. S.
, and Annaswamy
, A. M.
, 1987, “Persisent Excitation in Adaptive Systems
,” Int. J. Control
0020-7179, 45
, pp. 127
–160
.9.
Kazantzis
, N.
, and Kravaris
, C.
, 1998, “Nonlinear Observer Design Using Lyapunov’s Auxiliary Theorem
,” Syst. Control Lett.
0167-6911, 34
, pp. 241
–247
.10.
Krener
, A. J.
, and Isidori
, A.
, 1983, “Linearization by Output Injection and Nonlinear Observers
,” Syst. Control Lett.
0167-6911, 3
, pp. 47
–52
.11.
Bastin
, G.
, and Gevers
, H. R.
, 1988, “Stable Adaptive Observers for Nonlinear Time-Varying Systems
,” IEEE Trans. Autom. Control
0018-9286, 33
, 650
–658
.12.
Isidori
, A.
, 1989, Nonlinear Control Systems
, Springer-Verlag
, New York
.13.
Marino
, R.
, and Tomei
, P.
, 1995, “Adaptive Observers With Arbitrary Exponential Rate of Convergence for Nonlinear Systems
,” IEEE Trans. Autom. Control
0018-9286, 40
, pp. 1300
–1304
.14.
Santosuosso
, G.
, and Tomei
, P.
, 2002, “Global Adaptive Output Feedback Controllers With Application to Nonlinear Friction Compensation
,” Int. J. Adapt. Control Signal Process.
0890-6327, 16
, pp. 619
–634
.15.
Yu
, K. T.
, Jo
, N. H.
, and Seo
, J. H.
, 2003, “Nonlinear Adaptive Observer for a Parameter Affine Linearizable System
,” Proceedings of the 42nd IEEE Conference on Decision and Control
, Maui
, Hawaii
.16.
Ioannou
, P. A.
, and Sun
, J.
, 1996, Robust Adaptive Control
, Prentice–Hall
, Upper Saddle River, NJ
.17.
deWit
, C. C.
, Olsson
, H.
, Astrom
, K. J.
, and Lischinsky
, P.
, 1995, “A New Model for Control of Systems With Friction
,” IEEE Trans. Autom. Control
0018-9286, 40
, pp. 419
–425
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.