A new scheme for identifying the parameters of second-order nonlinear systems, including those affine with the control input, is presented. First, a high-gain PD control is applied for the tracking of a prescribed reference trajectory, along which the regressor is persistently excited. Next, a parameter observer, modified from Huang (Huang, J. T., 2002, “An Adaptive Compensator for a Class of Linearly Parameterized Systems,” IEEE Trans. Automat. Control, 47(3), pp. 483–486), is constructed to achieve the desired goals. Comparing to conventional methodologies, it is easier to implement for no acceleration signals or filtering of the system states being involved. Numerical examples are given in the final to demonstrate its effectiveness.

1.
Slotine
,
J.-J. E.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall
, Englewood Cliffs, NJ.
2.
Armstrong
,
B.
,
Dupont
,
P.
, and
DeWit
,
C. C
, 1994, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
0005-1098,
30
(
7
), pp.
1083
1138
.
3.
Verdonck
,
W.
,
Swevers
,
J.
, and
Samin
,
J. C.
, 2001, “
Experimental Robot Identification: Advantages of Combining Internal and External Measurements and of Using Periodic Excitation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
123
, pp.
630
636
.
4.
Sastry
,
S.
, and
Bodson
,
M.
, 1989,
Adaptive Control: Stability, Convergence and Robustness
,
Prentice-Hall
, Englewood Cliffs, NJ.
5.
Lin
,
J. S.
, and
Kanellakopoulos
,
I.
, 1999, “
Nonlinearities Enhance Parameter Convergence in Strict Feedback Systems
,”
IEEE Trans. Autom. Control
0018-9286,
44
, pp.
89
94
.
6.
Huang
,
J. T.
, 2002, “
An Adaptive Compensator for a Class of Linearly Parameterized Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
3
), pp.
483
486
.
7.
Chen
,
C. T.
, 1986,
Introduction to Linear System Theory
,
2nd ed.
,
Holt
, Rinehart.
8.
Ioannou
,
P. A.
, and
Sun
,
J.
, 1996,
Robust Adaptive Control
,
Prentice-Hall
, Englewood Cliffs, NJ.
9.
Qu
,
Z.
, and
Dorsey
,
J.
, 1991, “
Robust Tracking Control of Robots by a Linear Feedback Law
,”
IEEE Trans. Autom. Control
0018-9286,
36
, pp.
1081
1084
.
10.
Taylor
,
A. E.
, and
Mann
,
A. M.
, 1983,
Advanced Calculus
,
Wiley
, New York.
You do not currently have access to this content.