This paper proposes a control approach that can provide significant energy savings for the control of pneumatic servo systems. The control methodology is formulated by decoupling the standard four-way spool valve used for pneumatic servo control into two three-way valves, then using the resulting two control degrees of freedom to simultaneously satisfy a performance constraint (which for this paper is based on the sliding mode sliding condition), and an energy-saving dynamic constraint that minimizes cylinder pressures. The control formulation is presented, followed by experimental results that indicate significant energy savings with essentially no compromise in tracking performance relative to control with a standard four-way spool valve.

1.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air—I
,”
Trans. ASME
0097-6822,
78
, pp.
233
242
.
2.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air—II
,”
Trans. ASME
0097-6822,
78
, pp.
243
249
.
3.
Shearer
,
J. L.
, 1957, “
Nonlinear Analog Study of a High-Pressure Servomechanism
,”
Trans. ASME
0097-6822,
79
, pp.
465
472
.
4.
Mannetje
,
J. J.
, 1981, “
Pneumatic Servo Design Method Improves System Bandwidth Twenty-Fold
,”
Control Eng.
0010-8049,
28
(
6
), pp.
79
83
.
5.
Ben-Dov
,
D.
, and
Salcudean
,
S. E.
, 1998, “
A Force Controlled Pneumatic Actuator
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
5
), pp.
732
742
.
6.
Wang
,
J.
,
Pu
,
J.
, and
Moore
,
P.
, 1999, “
A Practical Control Strategy for Servo-Pneumatic Actuator Systems
,”
Control Eng. Pract.
0967-0661,
7
, pp.
1483
1488
.
7.
Maeda
,
S.
,
Kawakami
,
Y.
, and
Nakano
,
K.
, 1999, “
Position Control of Pneumatic Lifters
,”
J. Jpn. Hydraul. Pneum. Soc.
,
30
(
4
), pp.
89
95
.
8.
Ning
,
S.
, and
Bone
,
G. M.
, 2002, “
High Steady-State Accuracy Pneumatic Servo Positioning System With PVA/PV Control and Friction Compensation
,”
Proceeding of the 2002 IEEE International Conference on Robotics & Automation
, IEEE, New York, pp.
2824
2829
.
9.
Bobrow
,
J.
, and
McDonell
,
B.
, 1998, “
Modeling, Identification, and Control of a Pneumatically Actuated, Force Controllable Robot
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
5
), pp.
732
742
.
10.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part I-Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
416
425
.
11.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part II-Nonlinear Control Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
426
434
.
12.
Sanville
,
F. E.
, 1986, “
Two-Level Compressed Air Systems for Energy Saving
,” The 7th International Fluid Control Symposium, Bath, England, September, pp.
375
383
.
13.
Quaglia
,
G.
, and
Gastaldi
,
L.
, 1994, “
The Design of Pneumatic Actuator With Low Energy Consumption
,” The 4th Triennial International Symposium on Fluid Control, Fluid Measurement, and Visualization, Toulouse, France, August, pp.
1061
1066
.
14.
Quaglia
,
G.
, and
Gastaldi
,
L.
, 1995, “
Model and Dynamic of Energy Saving Pneumatic Actuator
,” The 4th Scandinavian International Conference on Fluid Power, Tampere, Finland, May, Vol.
1
, pp.
481
492
.
15.
Pu
,
J.
,
Wang
,
J. H.
,
Moore
,
P. R.
, and
Wong
,
C. B.
, 1997, “
A New Strategy for Closed-Loop Control of Servo-Pneumatic Systems With Improved Energy Efficiency and System Response
,” The Fifth Scandinavian International Conference on Fluid Power, Linkoping, Sweden, May, pp.
339
352
.
16.
Wang
,
J.
,
Wang
,
J.-D.
, and
Liau
,
V.
, 2000, “
Energy Efficient Optimal Control of Pneumatic Actuator Systems
,”
Syst. Sci.
,
26
(
3
), pp.
109
123
.
17.
Kawakami
,
Y.
,
Terashima
,
Y.
, and
Kawai
,
S.
, 1999, “
Application of Energy-saving to Pneumatic Driving Systems
,”
Proc. 4th JHPS International Symposium
,
Japan Hydraulics and Pneumatics Society
,
Tokyo, Japan
, pp.
201
206
.
18.
Arinaga
,
T.
,
Kawakami
,
Y.
,
Terashima
,
Y.
, and
Kawai
,
S.
, 2000, “
Approach for Energy-Saving of Pneumatic Systems
,”
Proceedings of the 1st FPNI-PhD Symposium
,
Fluid Power Net
,
Hamburg, Germany
, pp.
49
56
.
19.
Al-Dakkan
,
K. A.
,
Goldfarb
,
M.
, and
Barth
,
E. J.
, 2003, “
Energy Saving Control for Pneumatic Servo Systems
,”
ASME/IEEE International Conference on Advanced Intelligent Mechatronics
,
ASME
,
New York
, Vol.
1
, pp.
284
289
.
20.
Yao
,
B.
, and
Liu
,
S.
, 2002, “
Energy-Saving Control of Hydraulic Systems With Novel Programmable Valves
,”
Proc. of 4th World Congress on Intelligent Control and Automation
,
IEEE
,
Shanghai, China
, pp.
3219
3223
.
21.
Margolis
,
D.
, 2005, “
Energy Regenerative Actuator for Motion Control With Application to Fluid Power Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
1
), pp.
33
40
.
22.
Burrows
,
C. R.
, 1972,
Fluid Power Servomechanisms
,
Butler & Tanner Ltd
,
London
.
23.
McCloy
,
D.
, and
Martin
,
H.
, 1980,
Control of Fluid Power
,
Ellis Horwood
,
Chichester, England
.
24.
Slotine
,
J. J. E.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
This content is only available via PDF.
You do not currently have access to this content.