In this paper we present a camera calibration method using Snell’s Law. Traditional camera calibration is based on the pinhole model, which is an approximation algorithm using untrue geometrical assumptions and giving a single lumped result for the various optical elements in the camera system. Using full modeling of lens geometry, the proposed method establishes the geometric relationship between images and objects via Snell’s Law. A matrix equation that relates the intrinsic/extrinsic parameters of image the plane and six pose parameters of each element is determined from sensitivity analysis. These parameters can be identified using the least square method by observing points with known coordinates. An illustrative example using a two-camera stereo coordinate measurement system demonstrates that system performance via the proposed method is better than the pinhole model.

1.
Lin
,
P. D.
, and
Liao
,
T. T.
, 2004, “
A New Model of Binocular Stereo Vision System
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
102
114
.
2.
Murray
,
D.
, and
Basu
,
A.
, 1994, “
Motion Tracking With an Active Camera
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
16
, pp.
449
459
.
3.
Taylor
,
C. J.
, and
Kriegman
,
D. J.
, 1998, “
Vision-Based Motion Planning and Explortion Algorithms for Mobile Rbots
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
, pp.
417
426
.
4.
Abdel-Aziz
,
Y. I.
, and
Karara
,
H. M.
, 1971, “
Direct Linear Transformation From Comparator Coordinates Into Object Space Coordinates in Close-Range Photogrammetry
,”
Proceedings of the Symposium on Close-Range Photogrammetry
,
Falls Church, VA
,
American Society of Photogrammetry
, pp.
1
18
.
5.
Hatze
,
H.
, 1988, “
High-Precision Three-Dimensional Photogrammetric Calibration and Object Space Reconstruction Using a Modified DLT-Approach
,”
J. Biomech.
0021-9290,
21
, pp.
533
538
.
6.
Lenz
,
R.
, and
Tsai
,
R.
, 1988, “
Techniques for Calibration of the Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
10
, pp.
713
720
.
7.
Weng
,
J.
,
Cohen
,
P.
, and
Herniou
,
M.
, 1992, “
Camera Calibration With Distortion Models and Accuracy Evaluation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
14
, pp.
965
980
.
8.
Ma
,
L.
,
Chen
,
Y. Q.
, and
Morre
,
K. L.
, 2003, “
Flexible Camera Calibration Using a New Analytical Radial Undistortion Formula With Application to Mobile Robot Localization
,”
Proceedings of the IEEE International Symposium on Intelligence Control
, pp.
799
804
.
9.
Zhang
,
Z.
, 1999, “
Flexible Camera Calibration by Viewing a Plane From Unknown Orientation
,”
IEEE International Conference on Computer Vision
, pp.
666
673
.
10.
Wang
,
F. Y.
, 2005, “
An Effecient Coordinate Frame Calibration Method for 3-D Measurement by Multiple Camera Systems
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
35
, pp.
453
464
.
11.
Wang
,
F. Y.
, 2004, “
A Simple and Analytical Procedure for Calibrating Extrinsic Camewra Parameters
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
, pp.
121
124
.
12.
Klette
,
R.
,
SchlUns
,
K.
, and
Koschan
,
A.
, 1998,
Computer Vision: Three-Dimension Data from Images
,
Springer-Verlag
,
Singapore, Pte. Ltd.
, p.
44
.
13.
Paul
,
R. P.
, 1982,
Robot Manipulators-Mathematics, Programming and Control
,
MIT Press
,
Cambridge, MA
.
This content is only available via PDF.
You do not currently have access to this content.