Presented in this paper is a feedforward fueling controller identification methodology for the transient fueling control of spark ignition (SI) engines. The hypothesis of this work is that the feedforward fueling control of SI engines can be separated into steady state and transient phenomena and that the majority of the nonlinear behavior associated with engine fueling can be captured with nonlinear steady state models. The proposed transient controller identification process is built from standard nonparametric identification techniques followed by parametric model recovery. Crank angle serves as the independent variable for these models. Two separate system identification problems are solved to identify the air path dynamics and the fueling path dynamics. The transient feedforward controller is then calculated as the ratio of the air path-over-the fueling path dynamics thereby coordinating the engine fueling with the air path dynamics. It will be shown that a linear transient feedforward-fueling controller operating in tandem with a nonlinear steady state fueling controller can achieve air-fuel ratio regulation comparable to the production fueling controller without the extensive controller calibration process. The engine used in this investigation is a 1999 Ford 4.6L V-8 fuel injected engine.

1.
Dobner
,
D.
, 1980, “
A Mathematical Engine Model for Development of Dynamics Engine Control
,” SAE Technical Paper No. 800054.
2.
Brown
,
D.
,
Cave
,
P.
,
Hargreaves
,
M.
, and
Wallace
,
F.
, 1973, “
Transient Characteristics of Turbo-Charged Diesel Engines
,”
Engine Performance Modelling
,
The Institute of Mechanical Engineers
,
London, UK
.
3.
Aquino
,
C. F.
, 1981, “
Transient A/F Control Characteristics of the 5Liter Central Fuel Injection Engine
,” SAE Technical Paper No. 810494.
4.
Fiaschetti
,
J.
, and
Narasimhamurthi
,
N.
, “
A Descriptive Bibliography of SI Engine Modeling and Control
,” SAE Technical Paper No. 950986.
5.
Hendricks
,
E.
, and
Sorenson
,
S.
, 1990, “
Mean Value Modeling of Spark Ignition Engines
,” SAE Technical Paper No. 900616.
6.
Vinsonneau
,
J. A. F.
,
Shields
,
D. N.
,
King
,
P. J.
, and
Burnham
,
K. J.
, 2002, “
Improved SI Engine Modeling Techniques With Application to Fault Detection
,”
Proceedings of the IEEE Conference on Control Applications
,
Glasgow Scotland
,
U.K.
, Vol.
2
, pp.
719
724
.
7.
Ohata
,
A.
,
Ohashi
,
M.
,
Nasu
,
M.
, and
Inoue
,
T.
, 1995, “
Model Based Air Fuel Ratio Control for Reducing Exhaust Gas Emissions
,” SAE Technical Paper No. 950075.
8.
Turin
,
R.
, and
Geering
,
H.
, 1993, “
On-Line Identification of Air-to-Fuel Ratio Dynamics in a Sequentially Injected SI Engine
,” SAE Technical Paper No. 930857.
9.
Grizzle
,
J. W.
,
Cook
,
J. A.
, and
Milam
,
W. P.
, 1994, “
Improved Cylinder Air Charge Estimation for Transient Air Fuel Ratio Control
,” Proceedings of the American Control Conference, Baltimore, MD, Vol.
2
, pp.
1568
1573
.
10.
Chevalier
,
A.
,
Müller
,
M.
, and
Hendricks
,
E.
, 2000, “
On the Validity of Mean Value Engine Models During Transient Operation
,” SAE Technical Paper No. 2000-01-1261.
11.
Moskwa
,
J. J.
, and
Hedrick
,
J. K.
, 1987, “
Automotive Engine Modeling for Real Time Control Application
,”
Proceedings of the American Control Conference
,
Minneapolis
,
MN
, Vol.
1
, pp.
341
346
.
12.
Gambino
,
M.
,
Pianese
,
C.
, and
Rizzo
,
G.
, 1994, “
Identification of a Dynamic Model for Transient Mixture Formation in a Multi-Point Spark Ignition Engine
,”
Proceedings of the 1994 International Mechanical Engineering Congress and Exposition
, November 6–11, Chicago, IL, DSC-Vol.
54
, pp.
189
204
.
13.
Curtis
,
E. W.
,
Aquino
,
C. F.
,
Trumpy
,
D. K.
, and
Davis
,
G. C.
, 1996, “
New Port and Cylinder Wall Wetting Model to Predict Transient Air/Fuel Excursions in a Port Fuel Injected Engine
,”
Proceedings of the 1996 International Spring Fuels & Lubricants Meeting
, May 6–8, Dearborn, MI, p.
63
.
14.
Curtis
,
E.
,
Russ
,
S.
,
Aquino
,
C.
,
Lavoie
,
G.
, and
Trigui
,
N.
, 1998, “
The Effects of Injector Targeting and Fuel Volatility on Fuel Dynamics in a PFI Engine During Warm-up: Part II—Modeling Results
,” SAE Technical Paper No. 982519.
15.
Simons
,
M.
,
Locatelli
,
M.
,
Onder
,
C.
, and
Geering
,
H.
, 2000, “
A Nonlinear Wall-Wetting Model for the Complete Operating Region of a Sequential Fuel Injected SI Engine
,” SAE Technical Paper No. 2000-01-1260.
16.
Onder
,
C.
,
Roduner
,
C.
,
Simons
,
M.
, and
Geering
,
H.
, 1998, “
Wall-Wetting Parameters Over the Operating Region of a Sequential Fuel-Injected SI Engine
,” SAE Technical Paper No. 980792.
17.
Stuart
,
G.
, 1990, “
A System Identification Approach to the Modelling of Engine Transients
,” SAE Technical Paper No. 900237.
18.
Chin
,
Y.
, and
Coats
,
F.
, 1986, “
Engine Dynamics: Time-Based Verse Crank-Angle Based
,” SAE Technical Paper No. 860412.
19.
di Gaeta
,
A.
,
Santini
,
S.
,
Glielmo
,
L.
,
De Cristofaro
,
F.
,
Di Giuseppe
,
C.
, and
Caraceni
,
A.
, 2003, “
An Algorithm for the Calibration of Wall-Wetting Parameters
,” SAE Technical Paper No. 2003-01-1054.
20.
Turin
,
R.
,
Casartelli
,
E.
, and
Geering
,
H.
, 1994 “
A New Model for Fuel Supply Dynamics in an SI Engine
,” SAE Technical Paper No. 940208.
21.
Benninger
,
N. F.
, and
Plapp
,
G.
, 1991, “
Requirements and Performance of Engine Management Systems Under Transient Conditions
,” SAE Technical Paper No. 910083.
22.
Bidan
,
P.
,
Boverie
,
S.
, and
Chaumerliac
,
V.
, 1995, “
Nonlinear Control of a Spark Ignition Engine
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
3
(
1
), pp.
4
13
.
23.
Azzoni
,
P.
,
Minelli
,
G.
,
Moro
,
D.
,
Ceccarani
,
M.
, and
Rizzoni
,
G.
, 1999, “
Air-Fuel Ratio Control for a High Performance Engine using Throttle Angle Information
,” SAE Technical Paper No. 1999-01-1169.
24.
Inagaki
,
H.
,
Ohata
,
A.
, and
Inoue
,
T.
, 1990, “
An Adaptive Fuel Injection Control With Internal Model in Automotive Engines
,”
Proceedings of the 16th Annual Conference of IEEE Industrial Electronics Society
, November 27–30, Nagoya, Japan, pp.
78
83
.
25.
Ault
,
B.
,
Jones
,
V.
,
Powell
,
J.
, and
Franklin
,
G.
, 1994, “
Adaptive Air/Fuel Ratio Control of a Spark-Ignition Engine
,” SAE Technical Paper No. 940373.
26.
Turin
,
R.
, and
Geering
,
H.
, 1994, “
Model-Based Adaptive Fuel Control in an SI Engine
,” SAE Technical Paper No. 940374.
27.
Moraal
,
P.
,
Meyer
,
D.
,
Cook
,
J.
, and
Rychlick
,
E.
, 2000, “
Adaptive Transient Fuel Compensation: Implementation and Experimental Results
,” SAE Technical Paper No. 2000-01-0550.
28.
Vigild
,
C.
,
Struwe
,
M.
,
Andersen
,
K.
, and
Hendricks
,
E.
, 1999, “
Towards Robust H-Infinity Control of an SI-Engine’s Air/Fuel Ratio
,” SAE Technical Paper No. 1999-01-0854.
29.
Hendricks
,
E.
, and
Sorenson
,
S.
, 1991, “
SI Engine Controls and men Value Engine Modelling
,” SAE Technical Paper No. 910258.
30.
Stroh
,
D.
,
Franchek
,
M.
, and
Kerns
,
J.
, 2001, “
Fueling Control of Spark Ignition Engines
,”
Int. J. Vehicle Mech. Mobility
,
36
(
4–5
), pp.
329
358
.
31.
Bendat
,
J.
, and
Piersol
,
A.
, 2000,
Random Data: Analysis and Measurement Procedures
,
3rd ed.
,
Wiley
,
New York
.
32.
Code of Federal Regulations, 2000, Government Printing Office, U.S., 40CFR86.
You do not currently have access to this content.